Skip to main content

Advertisement

Log in

Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We propose an infrared plasmonic refractive index-sensitive nanosensor based on the electromagnetically induced transparency (EIT) of waveguide resonator systems. The structure consists of one tooth-shaped cavity as well as the bus and stub metal–insulator–metal waveguides. By adjusting the structural geometry, it is demonstrated that the controllable transmission of EIT response can be obtained with the coupled-mode theory and the finite-difference-time-domain simulations. It is found that the transmission spectra dip at the spectra can be strongly controlled by changing the refractive index filled in the stub waveguide. The calculated results show that the sensitivity, full width at half-maximum and figure of merit of plasmonic nanosensor are 733 nm/RIU, 24.11 nm and 695, respectively. With the compact structure, the nanosensor may have great potential to be used in the field of integrated optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  • Becker, J., Trügler, A., Jakab, A., Hohenester, U., Sönnichsen, C.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5, 161 (2010)

    Article  Google Scholar 

  • Dmitriev, A., Pakizeh, T., Kall, M., Sutherland, D.S.: Gold–silica–gold nanosandwiches: tunable bimodal plasmonic resonators. Small 3, 294 (2007)

    Article  Google Scholar 

  • EastFDTD v3.0, DONGJUN Science and Technology Co., China

  • Esteban, R., Vogelgesang, R., Dorfmüller, J., Dmitriev, A., Rockstuhl, C., Etrich, C., Kern, K.: Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8(10), 3155–3159 (2008)

    Article  ADS  Google Scholar 

  • El-Zohary, S.E., Azzazi, A, Okamoto, H., Okamoto, T., Haraguchi, M., Swillam M.A.: Design optimization and fabrication of plasmonic nano sensor. In: Proc. SPIE 8994, Photonic and Phononic Properties of Engineered Nanostructures IV, 89940V (2014)

  • Guo, N., Hu, W., Chen, X., Chen, X., Lu, W.: Enhanced plasmonic resonant excitation in a grating gated field-effect transistor with supplemental gates. Opt. Express 21, 1606–1614 (2013)

    Article  ADS  Google Scholar 

  • Han, Z.H., Forsberg, E., He, S.L.: Surface plasmon bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon. Technol. Lett. 19, 91–93 (2007)

    Article  ADS  Google Scholar 

  • Hao, E., Li, S., Bailey, R.C., Zou, S., Schatz, G.C., Hupp, J.T.: Optical properties of metal nanoshells. J. Phys. Chem. B 108, 1224 (2004)

    Article  Google Scholar 

  • Haus, H.A.: Waves and Fields in Optoelectronics, Chap. 7. Prentice-Hall, Englewood Cliffs (1987)

    Google Scholar 

  • Hendrickson, J., Guo, J.P., Zhang, B.Y., Buchwald, W., Soref, R.: Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 37(3), 371–373 (2012)

    Article  ADS  Google Scholar 

  • Hu, W., Wang, L., Chen, X., Guo, N., Miao, J., Yu, A., Lu, W.: Room-temperature plasmonic resonant absorption for grating-gate GaN HEMTs in far infrared terahertz domain. Opt. Quantum Electron. 45, 713–720 (2013)

    Article  Google Scholar 

  • Kekatpure, R.D., Hryciw, A.C., Barnard, E.S., Brongersma, M.L.: Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Opt. Express 1, 24112–24129 (2009)

    Article  ADS  Google Scholar 

  • Lu, H., Liu, X.M., Mao, D., Wang, G.X.: Plasmonic nanosensor based on fano resonance in waveguide-coupled resonators. Opt. Lett. 37(18), 3780–3782 (2012)

    Article  ADS  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  • Liu, N., Weis, T., Mesch, M., Langguth, L., Eigenthaler, U., Hirscher, M., Sönnichsen, C., Giessen, H.: Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10(4), 1103–1107 (2010)

    Article  ADS  Google Scholar 

  • Lin, X.S., Huang, X.G.: Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 33(23), 2874–2876 (2008)

    Article  ADS  Google Scholar 

  • Mirnaziry, S.R., Setayesh, A., Abrishamian, M.S.: Design and analysis of plasmonic filters based on stubs. J. Opt. Soc. Am. B. 28(5), 1300–1307 (2011)

    Article  ADS  Google Scholar 

  • Nusz, G.J., Marinakos, S.M., Rangarajan, S., Chilkoti, A.: Dual-order snapshot spectral imaging of plasmonic nanopartic.es. Appl. Opt. 50(21), 4198–4206 (2011)

    Article  ADS  Google Scholar 

  • Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  • Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: Hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    Article  ADS  Google Scholar 

  • Prodan, E., Nordlander, P.: Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120, 5444 (2004)

    Article  ADS  Google Scholar 

  • Wang, H., Brandl, D.W., Le, F., Nordlander, P., Halas, N.J.: Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006)

    Article  ADS  Google Scholar 

  • Wang, L., Hu, W., Wang, J., Wang, X., Wang, S., Chen, X., Lu, W.: Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency. Appl. Phys. Lett. 100, 123501 (2012)

    Article  ADS  Google Scholar 

  • Zhou, J.L., Da, M., Yang, J.H., Han, W.B., Xu, D.: Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems. Opt. Express 19, 4856–4861 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China Grants (61306138, 11374161), Natural Science Foundation of Jiangsu Province, China Grants (BK2012460, BK20131001), The Priority Academic Program Development of Jiangsu Higher Education Institutions. The Startup Foundation for Introducing Talent of NUIST (S8113075001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Ni or X. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, B., Chen, X.Y., Xiong, D.Y. et al. Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Opt Quant Electron 47, 1339–1346 (2015). https://doi.org/10.1007/s11082-014-0059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0059-0

Keywords

Navigation