Skip to main content
Log in

Deposition of graphene by sublimation of pyrolytic carbon

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We report on the study of deposition of carbon films on different substrates: (001) Si, (001) Si covered with 300 nm \(\hbox {SiO}_{2} (\hbox {Si/SiO}_{2})\) film as well as on (001) Si covered with \(\hbox {SiO}_{2}\) and diamond-like carbon layers (DLC) carried out by sublimation of pyrolytic carbon layers. It is established by Raman as well as by X-ray photoelectron spectroscopy (XPS) that the layers deposited on Si as well as on \(\hbox {Si/SiO}_{2}\) substrates consist of amorphous \(\hbox {sp}^{2}\)—bonded carbon (\(\upalpha \)-C) and the longer deposition time leads to formation of micro-sized \(\upalpha \)-C islands. The Raman studies of the films deposited on the \(\hbox {SiO}_{2}\) covered areas in the third type substrates have requisites of defected graphene (presence of clear D and weak broadening of the 2D band while the intensity ratio of 2D to G and D bands remains high: more than 2.5 and 3.1, respectively) and the films are predominantly single-layered. These films are determined as “polygraphene” (mainly single-layered graphene film consisting of mutually misoriented areas). The films deposited on the DLC paths in the third type of substrates most probably consist of few layers of mixed few-layered polygraphene and \((\hbox {sp}^{2}\hbox {C})\)- and \((\hbox {sp}^{3}\hbox {C})\)- H phases. The thorough XPS study indirectly confirms the above conclusions. The formation of polygraphene and mixed phases is explained with nucleation of many stable carbon aggregates which, once formed, are not sufficiently mobile to mutually re-orientate until forming defect-free graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  • Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y.: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008)

    Article  Google Scholar 

  • Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenko, A.N., Conrad, E.H., First, P.N.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. 108, 19912–19916 (2004)

    Article  Google Scholar 

  • Berger, C., Song, Z., Li, T., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Marchenko, A.N., Conrad, E.H.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  Google Scholar 

  • Bradshaw, A.M., Cederbaum, S.L., Domcke, W., Krause, U.: Plasmon coupling to core hole excitations in carbon. J. Phys. C Solid State 7, 4503–4512 (1974)

    Article  ADS  Google Scholar 

  • Brar, V.W., Samsonidze, G.G., Dresselhaus, M.S., Dresselhaus, G., Saito, R., Swan, A.K., Ünlü, M.S., Goldberg, B.B., Souza, Filho, A.G., Jorio, A.: Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Phys. Rev. B 66, 155418-155427 (2002)

  • Casiraghi, C., Pisana, S., Novoselov, K.S., Geim, A.K., Ferrari, A.C.: Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91, 233108–233110 (2007)

    Article  ADS  Google Scholar 

  • Chen, J.H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on \(\text{SiO}_{2}\). Nat. Nanotechnol. 3, 206–209 (2008)

    Article  Google Scholar 

  • Cong, C., Yu, T., Saito, R., Dresselhaus, G.F., Dresselhaus, M.S.: Second-order overtone and combination Raman modes of graphene layers in the range of 1690–2150 \(\text{cm}^{-1}\). ACS Nano 5, 1600–1605 (2011)

    Article  Google Scholar 

  • Díaz, J., Paolicelli, G., Ferrer, S., Comin, F.: Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B 54, 8064–8069 (1996)

  • Ding, X., Ding, G., Xie, X., Huang, F., Jiang, M.: Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49, 2522–2525 (2011)

    Article  Google Scholar 

  • Dwivedi, N., Kumar, S., Malik, H.K., Govind, Rauthan, C.M.S., Panwar, O.S.: Correlation of \(\text{sp}^{3}\) and \(\text{sp}^{2}\) fraction of carbon with electrical, optical and nano-mechanical properties of argondiluted diamond-like carbon films. Appl. Surf. Sci. 257, 6804–6810 (2011)

    Article  ADS  Google Scholar 

  • Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Basko, D.M.: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–187404 (2007)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  ADS  Google Scholar 

  • Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414–075426 (2001)

    Article  ADS  Google Scholar 

  • Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)

    Article  Google Scholar 

  • Haerle, R., Riedo, E., Pasquarello, A., Baldereschi, A.: \(\text{sp}^{2}/\text{sp}^{3}\) hybridization ratio in amorphous carbon from C 1 s corelevel shifts: X-ray photoelectron spectroscopy and firstprinciples calculation. Phys. Rev. B 65, 045101 (2001)

  • Hawaldar R., Merino P., Correia M.R., Bdikin I., Grácio J., Méndez J., Martín-Gago J.A., Singh M.K.: Large-area high-throughput synthesis of monolayer graphene sheet by hot filament thermal chemical vapor deposition. Nat. Sci. Rep. 2, Art.Nr. 682, p. 1–9 (2012)

  • Han, W., Zettl, A.: An efficient route to graphitic carbon-layer-coated gallium nitride nanorods. Adv. Mater. 14, 1560–1562 (2002)

    Article  Google Scholar 

  • Heersche, H.B., Jarillo-Herrero, P., Oostinga, J.B., Vandersypen, L.M.K., Morpurgo, A.F.: Bipolar supercurrent in graphene. Nature 446, 56–59 (2007)

    Article  ADS  Google Scholar 

  • Hofrichter, J., Szafranek, B.N., Otto, M., Echtermeyer, T.J., Baus, M., Majerus, A., Geringer, V., Ramsteiner, M., Kurz, H.: Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett. 10, 36–42 (2010)

    Article  ADS  Google Scholar 

  • Ismach, A., Druzgalski, C., Penwell, S., Schwartzberg, A., Zheng, M., Javey, A., Bokor, J., Zhang, Y.: Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010)

    Article  ADS  Google Scholar 

  • Jiao, L., Wang, X., Diankov, G., Wang, H., Dai, H.: Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010)

    Article  ADS  Google Scholar 

  • Johnson, J.A., Holland, D., Woodford, J.B., Zinovev, A., Gee, I.A., Eryilmaz, O.L., Erdemir, A.: Top surface characterization of a near frictionless carbon film. Diam. Relat. Mater. 16, 209–215 (2007)

    Article  ADS  Google Scholar 

  • Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)

    Article  ADS  Google Scholar 

  • Lascovich, J.C., Giorgi, R., Scaglione, S.: Evaluation of the \(\text{sp}^{2}/\text{sp}^{3}\) ratio in amorphous carbon structure by XPS and XAES. Appl. Surf. Sci. 47, 17–21 (1991)

    Article  ADS  Google Scholar 

  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  ADS  Google Scholar 

  • Lundeberg, M.B., Folk, J.A.: Spin-resolved quantum interference in graphene. Nat. Phys. 5, 894–897 (2009)

    Article  Google Scholar 

  • Malard, L.M., Pimenta, M.A., Dresselhaus, G.F., Dresselhaus, M.S.: Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    Article  ADS  Google Scholar 

  • Michaelson, Sh, Hoffman, A.: Hydrogen bonding, content and thermal stability in nano-diamond films. Diam. Relat. Mater. 15, 486–497 (2006)

    Article  ADS  Google Scholar 

  • Milenov, T.I.: Chemical-vapour-deposition-initiated growth and characterization of diamond and diamond-like micro-crystals. J. Cryst. Growth 310, 5447–5452 (2008)

    Article  ADS  Google Scholar 

  • Morar, J.F., Himpsel, F.J., Hollinger, G., Jordan, J.L., Hughes, G., McFeely, F.R.: Carbon 1s excitation studies of diamond (111). I. Surface core levels. Phys. Rev. B 33, 1340–1345 (1986)

    Article  ADS  Google Scholar 

  • Nemanich, R.J., Solin, S.A.: First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20, 392–401 (1979)

    Article  ADS  Google Scholar 

  • Ni, Z., Wang, Y., Yu, T., Shen, Z.: Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  • Poncharal, P., Ayari, A., Michel, T., Sauvajol, J.-L.: Raman spectra of misoriented bilayer graphene. Phys. Rev. B 78, 113407 (2008)

  • Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J.: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)

    Article  ADS  Google Scholar 

  • Rummeli, M.H., Bachmatiuk, A., Scott, A., Borrnert, F., Warner, J.H., Hoffman, V., Lin, J.-H., Cuniberti, G., Büchner, B.: Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206–4210 (2010)

    Article  Google Scholar 

  • Rutherford R.B., Dudman R.L.: US Patent 6 667 100 B2 (2003)

  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.B.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  • Sun, J., Lindvall, N., Cole, M.T., Teo, K.B.K., Yurgens, A.: Large-area uniform graphene-like thin films grown by chemical vapor deposition directly on silicon nitride. Appl. Phys. Lett. 98, 252107–252109 (2011)

    Article  ADS  Google Scholar 

  • Sun, J., Lindvall, N., Cole, M.T., Wang, T., Booth, T.J., Bøggild, P., Teo, K.B.K., Liu, J., Yurgens, A.: Controllable chemical vapor deposition of large area uniform nanocrystalline graphene directly on silicon dioxide. J. Appl. Phys. 111, 044103–044106 (2012)

    Article  ADS  Google Scholar 

  • Sun, Z., Yan, Z., Yao, J., Beitler, E., Zhu, Y., Tour, J.M.: Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010)

    Article  ADS  Google Scholar 

  • Svensson, S., Eriksson, B., Maartensson, N., Wendin, G., Gelius, U.: Electron shake-up and correlation satellites and continuum shake-off distributions in X-ray photoelectron spectra of the rare gas atoms. J. Electron Spectrosc. Relat. Phenom. 47, 327–384 (1988)

    Article  Google Scholar 

  • Thomsen, C., Reich, S.: Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)

    Article  ADS  Google Scholar 

  • Tsen, A.W., Brown, L., Levendorf, M.P., Ghahari, F., Huang, P.Y., Havener, R.W., Ruiz-Vargas, C.S., Muller, D.A., Kim, P., Park, J.: Tailoring electrical transport across grain boundaries in polycrystalline graphene. Science 336, 1143–1146 (2012)

    Article  ADS  Google Scholar 

  • Tuinstra, F., Koenig, J.L.: Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    Article  ADS  Google Scholar 

  • Vo-Van, C., Kimouche, A., Reserbat-Plantey, A., Fruchart, O., Bayle-Guillemaud, P., Bendiab, N., Coraux, J.: Epitaxial graphene prepared by chemical vapor deposition on single crystal thin iridium films on sapphire. Appl. Phys. Lett. 98, 181903–181903 (2011)

    Article  ADS  Google Scholar 

  • Wang, Y., Ni, Z., Yu, T., Shen, Z., Wang, H., Wu, Y., Chen, W., Wee, A.T.S.: Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637–10640 (2008)

  • Wei, D., Liu, Y., Zhang, H., Huang, L., Wu, B., Chen, J., Yu, G.: Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. J. Am. Chem. Soc. 131, 11147–11154 (2009)

    Article  Google Scholar 

  • Wilson, J.I.B., Walton, J.S., Beamson, G.: Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 121, 183–201 (2001)

    Article  Google Scholar 

  • Yazyev, O.V., Louie, S.G.: Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806–809 (2010)

    Article  ADS  Google Scholar 

  • Zhang, Y., Tan, Y.W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Assoc. Prof. E.P. Valcheva (Faculty of Physics, Sofia University, Sofia) for help with the Raman measurements as well as support from MPNS COST ACTION MP1204 - TERA-MIR Radiation: Materials, Generation, Detection and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Milenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milenov, T., Avramova, I. Deposition of graphene by sublimation of pyrolytic carbon. Opt Quant Electron 47, 851–863 (2015). https://doi.org/10.1007/s11082-014-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-014-0015-z

Keywords

Navigation