Skip to main content
Log in

Stable high optical power in quantum well lasers with profiled reflection and tapered structures

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A comprehensive model is presented to study quantum well tapered lasers and quantum well stripe lasers with profiled reflectivity output facets and to obtain lateral stability in high power semiconductor laser. Simulation of semiconductor lasers is performed by numerically solving space-dependent coupled partial differential equations for the complex optical forward and backward waves, carrier density distribution and temperature distribution. The coupled equations are solved by finite difference beam propagation method. The effect of nonlinear parameters like Kerr and linewidth enhancement factors, and precise dependence of linewidth enhancement factor and gain factor on the carrier density and temperature are considered in this paper. We use modal reflector in stripe lasers to confine the lateral mode to the stripe centre and provide the stable operation. We also use unpumped window to reduce the facet temperature and improve the catastrophic optical mirror damage level of tapered lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bissessur, H., Ettinger, R.D., Fernandez, F.A., Davies, J.B.: The influence of temperature on the eigenmodes of a semiconductor laser. IEEE Photon. Technol. Lett. 5, 764–766 (1993)

    Article  ADS  Google Scholar 

  • Bull, S., Andrianov, A.V., Harrison, I., Dorin, M., Kerr, R.B., Noto, J., Larkinns, E.C.: A spectroscopically resolved photo- and electroluminescence microscopy technique for the study of high-power and high-brightness laser diodes. IEEE Trans. Instrum. Meas. 54(3), 1079–1088 (2005)

    Article  Google Scholar 

  • Erbert, G., Beister, G., Hülsewede, R., Knauer, A., Pitroff, W., Sebastian, J., Wenzel, H., Weyers, M., Trankle, G.: High-power highly reliable Al-free 940 nm diode lasers. IEEE J. Sel. Topics Quantum Electron. 7, 143–148 (2001)

    Article  Google Scholar 

  • Hess, O., Koch, S.W., Moloney, J.V.: Filamentation and beam propagation in broad-area semiconductor lasers. IEEE J. Quantum Electron. 31, 35–43 (1995)

    Article  ADS  Google Scholar 

  • Li, X., Peng, C., Zhang, Y., Wang, J., Xiong, L., Zhang, P., Liu, X.: A new continuous wave 2500W semiconductor laser vertical stack. In: Proceedings of 11th International Conference on Electronic Packaging Technology and High Density Packaging, pp. 1350–1354 (2010)

  • Liu, X., Hu, M.H., Caneau, C.G., Bhat, R., Zah, C.: Thermal management strategies for high power semiconductor pump lasers. IEEE Trans. Compon. Packag. Technol. 29, 268–276 (2006)

    Article  Google Scholar 

  • Marciante, J.R., Agrawal, G.P.: Nonlinear mechanism of filamentation in broad-area semiconductor lasers. IEEE J. Quantum Electron. 32, 590–596 (1996)

    Article  ADS  Google Scholar 

  • Marciante, J.R., Agrawal, G.P.: Spatiotemporal characteristics of filamentation in broad-area semiconductor lasers. IEEE J. Quantum Electron. 33, 1174–1179 (1997)

    Article  ADS  Google Scholar 

  • Menzel, U.: Self-consistent calculation of facet heating in asymmetrically coated edge emitting diode lasers. Semicond. Sci. Technol. 13, 256–276 (1998)

    Article  ADS  Google Scholar 

  • Mikulla, M., Chazan, P., Schmitt, A., Morgott, S., Wetzel, A., Walther, M., Kiefer, R., Pletschen, W., Braunstein, J., Weimann, G.: High-brightness tapered semiconductor laser oscillators and amplifiers with low-modal gain epilayer-structures. IEEE Photon. Technol. Lett. 10, 654–656 (1998)

    Article  ADS  Google Scholar 

  • O’Brien, S., Schönfelder, A., Lang, R.J.: 5-W CW diffraction-limited InGaAs broad-area flared amplifier at 970 nm. IEEE Photon. Technol. Lett. 9, 1217–1219 (1998)

    Article  Google Scholar 

  • O’Brien, S., Welch, D.F., Parke, R.A., Mehuys, D., Dzurko, K., Lang, R.J., Waarts, R., Scifres, D.: Operating characteristics of a high power monolithically integrated flared amplifier master oscillator power amplifier. IEEE J. Quantum Electron. 29(6), 2052–2057 (1993)

    Article  ADS  Google Scholar 

  • Smudzinski, C., Botez, D., Mawst, L.J., Battacharya, A., Nesnidal, M., Nabiev, R.F.: Three-core arrow-type diode laser: Novel high power, single-mode device, and effective master oscillator for flared antiguided MOPA’s. IEEE J. Sel. Topics Quantum Electron. 1, 129–137 (1995)

    Article  Google Scholar 

  • Szymański, M., Kubica, J.M., Szczepański, P.: Theoretical analysis of lateral modes in broad-area semiconductor lasers with profiled reflectivity output facets. IEEE J. Quantum Electron. 37, 430–438 (2001)

    Article  ADS  Google Scholar 

  • Westbrook, L.D., Adams, M.J.: Explicit approximations for the linewidth-enhancement factor in quantum-well lasers. Proc. IEE. 135, 223–225 (1988)

    MathSciNet  Google Scholar 

  • Zhang, Y., Wang, J., Peng, C., Li, X., Xiong, L., Liu, X.: A new package structure for high power single emitter semiconductor. In: Proceedings of 11th International Conference on Electronic Packaging Technology and High Density Packaging, pp. 1346–1349 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyedfaraji, A., Ahmadi, V. & Noshiravani, M. Stable high optical power in quantum well lasers with profiled reflection and tapered structures. Opt Quant Electron 45, 401–410 (2013). https://doi.org/10.1007/s11082-012-9645-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9645-1

Keywords

Navigation