Skip to main content
Log in

Design of micro resonator quantum well intensity modulator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A compact rectangular resonator quantum well intensity modulator for operation in the wavelength band around 1 μm is described. The modulator is realized using InGaAs/GaAs modulation-doped quantum wells and operates on the principles of index change caused by blue shifts of the absorption edge. High efficiency 90° bends are used to form the resonator and to provide optimal coupling to the external waveguide. The benefits are to reduce loss, to relax the lithography requirements and to provide more flexible contact designs to the modulator. The characteristics of the modulator are analyzed using MATLAB and FDTD simulation tools with refractive index profiles based on measured absorption parameters. A model including parasitics is developed for HSPICE transient simulations and is run in the AGILENT ADS environment. The performance parameters are determined to be an extinction ratio of 10.4 dB, a bandwidth of 33 GHz, and a dc power less than 1 mW for device dimensions of 16 × 6 μm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu P.K.: Theory of Optical Processes in Semiconductors: Bulk and Microstructures. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  • Byungchae, K., Yu-Chia, C., Dagli, N.: Compact ring resonators using conventional waveguides, etched beam splitters and total internal reflection mirrors. In: Proceedings of OFC, 22–26 March 2009, pp. 1–3 (2009)

  • Dong P., Liao S., Feng D., Liang H., Zheng D., Shafiiha R., Kung C.-C., Qian W., Li G., Zheng X., Krishnamoorthy A.V., Asghari M.: Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator. Opt. Express 17(25), 22484–22490 (2009)

    Article  ADS  Google Scholar 

  • Dong P., Shafiiha R., Liao S., Liang H., Feng N.-N., Feng D., Li G., Zheng X., Krishnamoorthy A.V., Asghari M.: Wavelength-tunable silicon microring modulator. Opt. Express 18(11), 10941–10946 (2010)

    Article  ADS  Google Scholar 

  • Doo Gun K., Jae Hyuk S., Ozturk C., Jong Chang Y., Chung Y., Dagli N.: Total internal reflection mirror-based InGaAsP ring resonators integrated with optical amplifiers. Photon. Technol. Lett. IEEE 17(9), 1899–1901 (2005)

    Article  ADS  Google Scholar 

  • Espinola R., Ahmad R., Pizzuto F., Steel M., Osgood R.: A study of high-index-contrast 90^ waveguide bend structures. Opt. Express 8(9), 517–528 (2001)

    Article  ADS  Google Scholar 

  • Goossen K.W., Walker J.A., D’Asaro L.A., Hui S.P., Tseng B., Leibenguth R., Kossives D., Bacon D.D., Dahringer D., Chirovsky L.M.F., Lentine A.L., Miller D.A.B.: GaAs MQW modulators integrated with silicon CMOS. Photon. Technol. Lett. IEEE 7(4), 360–362 (1995)

    Article  ADS  Google Scholar 

  • Green W.M., Rooks M.J., Sekaric L., Vlasov Y.A.: Ultra-compact, low RF power, 10 Gb/s siliconMach-Zehnder modulator. Opt. Express 15(25), 17106–17113 (2007)

    Article  ADS  Google Scholar 

  • Hou H.Q., Cheng A.N., Wieder H.H., Chang W.S.C., Tu C.W.: Electroabsorption of InAsP/InP strained multiple quantum wells for 1.3 μm waveguide modulators. Appl. Phys. Lett. 63(13), 1833–1835 (1993)

    Article  ADS  Google Scholar 

  • Kai-Jun C., Jian-Dong L., Yong-Zhen H., Yue-De Y., Jin-Long X., Yun D.: InGaAsP-InP square microlasers with a vertex output waveguide. Photon. Technol. Lett. IEEE 22(18), 1370–1372 (2010)

    Article  ADS  Google Scholar 

  • Kimerling L.: Electronic-photonic integrated circuits on the CMOS platform. Proc. SPIE 6125(1), 612502 (2006)

    Article  Google Scholar 

  • Krishnamoorthy A.V., Goossen K.W., Jan W., Xuezhe Z., Ho R., Guoliang L., Rozier R., Liu F., Patil D., Lexau J., Schwetman H., Dazeng F., Asghari M., Pinguet T., Cunningham J.E.: Progress in low-power switched optical interconnects. Sel. Top. Quantum Electron. IEEE J. 17(2), 357–376 (2011)

    Article  Google Scholar 

  • Kudo K., Yashiki K., Sasaki T., Yokoyama Y., Hamamoto K., Morimoto T., Yamaguchi M.: 1.55-μm wavelength-selectable microarray DFB-LD’s with monolithically integrated MMI combiner, SOA, and EA-modulator. Photon. Technol. Lett. IEEE 12(3), 242–244 (2000)

    Article  ADS  Google Scholar 

  • Lardenois S., Pascal D., Vivien L., Cassan E., Laval S., Orobtchouk R., Heitzmann M., Bouzaida N., Mollard L.: Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. Opt. Lett. 28(13), 1150–1152 (2003)

    Article  ADS  Google Scholar 

  • Li C., Zhou L., Poon A.W.: Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Opt. Express 15(8), 5069–5076 (2007)

    Article  ADS  Google Scholar 

  • Liu A., Jones R., Liao L., Samara-Rubio D., Rubin D., Cohen O., Nicolaescu R., Paniccia M.: A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427(6975), 615–618 (2004)

    Article  ADS  Google Scholar 

  • Liu J., Beals M., Pomerene A., Bernardis S., Sun R., Cheng J., Kimerling L.C., Michel J.: Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photon. 2(7), 433–437 (2008)

    Article  Google Scholar 

  • Liu J., Pan D., Jongthammanurak S., Wada K., Kimerling L.C., Michel J.: Design of monolithically integrated GeSi electro-absorption modulators and photodetectors on a SOI platform. Opt. Express 15(2), 623–628 (2007)

    Article  ADS  Google Scholar 

  • Manipatruni S., Preston K., Long C., Lipson M.: Ultra-low voltage, ultra-small mode volume silicon microring modulator. Opt. Express 18(17), 18235–18242 (2010)

    Article  ADS  Google Scholar 

  • Manipatruni, S., Qianfan, X., Schmidt, B., Shakya, J., Lipson, M.: High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator. In: Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, 21–25 Oct 2007, pp. 537–538 (2007)

  • Miller D.A.B.: Optical interconnects to silicon. Sel. Top. Quantum Electron. IEEE J. 6(6), 1312–1317 (2000)

    Article  ADS  Google Scholar 

  • Miyazaki Y., Tada H., Shin-ya T., Takagi K., Aoyagi T., Mitsui Y.: Small-chirp 40-Gbps electroabsorption modulator with novel tensile-strained asymmetric quantum-well absorption layer. Quantum Electron. IEEE J. 39(6), 813–819 (2003)

    Article  ADS  Google Scholar 

  • O’Brien S., Shealy J.R., Wicks G.W.: Monolithic integration of an AlGaAs laser and an intracavity electroabsorption modulator using selective partial interdiffusion. Appl. Phys. Lett. 58(13), 1363 (1991)

    Article  ADS  Google Scholar 

  • Pankove J.I.: Optical Processes in Semiconductors. Courier Dover Publications, New York (1971)

    Google Scholar 

  • Paul D.J.: 8-band k.p modeling of the quantum confined Stark effect in Ge quantum wells on Si substrates. Phys. Rev. B 77(15), 155323 (2008)

    Article  ADS  Google Scholar 

  • Qian Y., Kim S., Song J., Nordin G.P., Jiang J.: Compact and low loss silicon-on-insulator rib waveguide 90^ bend. Opt. Express 14(13), 6020–6028 (2006)

    Article  ADS  Google Scholar 

  • Radosavljevic, M., Dewey, G., Fastenau, J.M., Kavalieros, J., Kotlyar, R., Chu-Kung, B., Liu, W.K., Lubyshev, D., Metz, M., Millard, K., Mukherjee, N., Pan, L., Pillarisetty, R., Rachmady, W., Shah, U., Chau, R.: Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications. Paper presented at the Electron Devices Meeting (IEDM), 2010 IEEE International, 6–8 Dec (2010)

  • Roth J.E., Fidaner O., Schaevitz R.K., Kuo Y.-H., Kamins T.I., Harris J.S., Miller D.A.B.: Optical modulator on silicon employing germanium quantum wells. Opt. Express 15(9), 5851–5859 (2007)

    Article  ADS  Google Scholar 

  • Soref R.: The past, present, and future of silicon photonics. Sel. Top. Quantum Electron. IEEE J. 12(6), 1678–1687 (2006)

    Article  Google Scholar 

  • Soref R., Bennett B.: Electrooptical effects in silicon. Quantum Electron. IEEE J. 23(1), 123–129 (1987)

    Article  ADS  Google Scholar 

  • Sysak M.N., Raring J.W., Barton J.S., Dummer M., Tauke-Pedretti A., Poulsen H.N., Blumenthal D.J., Coldren L.A.: Single-chip, widely-tunable 10 Gbit/s photocurrent-driven wavelength converter incorporating a monolithically integrated laser transmitter and optical receiver. Electron. Lett. 42(11), 657–658 (2006)

    Article  Google Scholar 

  • Taylor G.W., Vang T., Sargood S.K., Cooke P., Claisse P.: Demonstration of the heterostructure field-effect transistor as an optical modulator. Appl. Phys. Lett. 59(9), 1031–1033 (1991)

    Article  ADS  Google Scholar 

  • Vang T.A., Taylor G.W., Evaldsson P.A., Cooke P.: Heterostructure field-effect transistor optical modulator in the InGaAs/AlGaAs material system. Appl. Phys. Lett. 61(20), 2464–2466 (1992)

    Article  ADS  Google Scholar 

  • Watts, M.R., Trotter, D.C., Young, R.W., Lentine, A.L.: Ultralow power silicon microdisk modulators and switches. In: Group IV Photonics, 5th IEEE International Conference on, 17–19 Sept 2008, pp. 4–6 (2008)

  • Xu Q., Fattal D., Beausoleil R.G.: Silicon microring resonators with 1.5 μm radius. Opt. Express 16(6), 4309–4315 (2008)

    Article  ADS  Google Scholar 

  • Xu Q., Schmidt B., Pradhan S., Lipson M.: Micrometre-scale silicon electro-optic modulator. Nature 435(7040), 325–327 (2005)

    Article  ADS  Google Scholar 

  • Xu Z., Wang C., Qi W., Yuan Z.: Electro-optical effects in strain-compensated InGaAs/InAlAs coupled quantum wells with modified potential. Opt. Lett. 35(5), 736–738 (2010)

    Article  ADS  Google Scholar 

  • Yao J., Cai J., Opper H., Basilica R., Garber R., Taylor G.W.: Comparison of theory and experiment in a modified BICFET/HFET structure. Solid-State Electron. 53(9), 979–987 (2009)

    Article  ADS  Google Scholar 

  • Yariv A.: Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett. 36(4), 321–322 (2000)

    Article  Google Scholar 

  • Zhang L., Li Y., Song M., Yang J.-Y., Beausoleil R., Willner A.: Silicon microring-based signal modulation for chip-scale optical interconnection. Appl. Phys. A: Mater. Sci. Process. 95(4), 1089–1100 (2009)

    Article  ADS  Google Scholar 

  • Zhang, Y., Vang, T.A., Taylor, G.W.: Transistor based quantum well optical modulator and its performance in RF links. In: Proceedings of SPIE 2010, vol. 1, pp. 12–22. SPIE (2010)

  • Zheng X., Liu F., Patil D., Thacker H., Luo Y., Pinguet T., Mekis A., Yao J., Li G., Shi J., Raj K., Lexau J., Alon E., Ho R., Cunningham J.E., Krishnamoorthy A.V.: A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems. Opt. Express 18(1), 204–211 (2010)

    Article  ADS  Google Scholar 

  • Zucker J.E., Chang T.Y., Wegener M., Sauer N.J., Jones K.L., Chemla D.S.: Large refractive index changes in tunable-electron-density InGaAs/InAlAs quantum wells. Photon. Technol. Lett. IEEE 2(1), 29–31 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Pile, B. & Taylor, G.W. Design of micro resonator quantum well intensity modulator. Opt Quant Electron 44, 635–648 (2012). https://doi.org/10.1007/s11082-012-9581-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11082-012-9581-0

Keywords

Navigation