Skip to main content
Log in

Design methodology of magnetic fields and structures for magneto-mechanical resonator based on topology optimization

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Magneto-mechanical resonators—magnetically-driven vibration devices—are used in many mechanical and electrical devices. We develop topology optimization (TO) to configure the magnetic fields of such resonators to enable large vibrations under specified current input to be attained. A dynamic magneto-mechanical analysis in the frequency domain is considered where we introduce the surface magnetic force calculated from the Maxwell stress tensor. The optimization problem is then formulated involving specifically the maximization of the dynamic compliance. This formulation is implemented using the solid-isotropic-material-with-penalization method for TO by taking into account the relative permeability, Young’s modulus, and the mass density of the magnetic material as functions of the density function. Through the 2D numerical studies, we confirm that this TO method works well in designing magnetic field patterns and providing matching between the external current frequency and eigenfrequency of the vibrating structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allaire G (2001) Shape optimization by the homogenization method. Springer, New York

    MATH  Google Scholar 

  • Allaire G (2007) Conception optimale de structures. Springer, Berlin

    MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer, Berlin

    MATH  Google Scholar 

  • Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215–1237

    Article  MATH  Google Scholar 

  • Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428

    Article  MathSciNet  MATH  Google Scholar 

  • Ha Y, Cho S (2006) Design sensitivity analysis and topology optimization of eigenvalue problems for piezoelectric resonators. Smart Mater Struct 15(6):1513

    Article  Google Scholar 

  • Lee J, Kikuchi N (2010) Structural topology optimization of electrical machinery to maximize stiffness with body force distribution. IEEE Trans Magn 46(10):3790–3794

    Article  Google Scholar 

  • Lee J, Yoon SW (2015) Optimization of magnet and back iron topologies in electromagnetic vibration energy harvesters. IEEE Trans Magn 51(6):1–7. doi:10.1109/TMAG.2014.2382596

    Google Scholar 

  • Lee J, Seo JH, Kikuchi N (2010) Topology optimization of switched reluctance motors for the desired torque profile. Struct Multidiscip Optim 42(5):783–796

    Article  Google Scholar 

  • Lee J, Dede EM, Nomura T (2011) Simultaneous design optimization of permanent magnet, coils, and ferromagnetic material in actuators. IEEE Trans Magn 47(12):4712–4716

    Article  Google Scholar 

  • Lee J, Dede EM, Banerjee D, Iizuka H (2012) Magnetic force enhancement in a linear actuator by air-gap magnetic field distribution optimization and design. Finite Elements Anal Des 58:44–52

    Article  Google Scholar 

  • Ma ZD, Kikuchi N, Hagiwara I (1993) Structural topology and shape optimization for a frequency response problem. Comput Mech 13(3):157–174

    Article  MathSciNet  MATH  Google Scholar 

  • Maeda Y, Nishiwaki S, Izui K, Yoshimura M, Matsui K, Terada K (2006) Structural topology optimization of vibrating structures with specified eigenfrequencies and eigenmode shapes. Int J Numer Methods Eng 67:597–628

    Article  MathSciNet  MATH  Google Scholar 

  • McPherson A (2010) The magnetic resonator piano: electronic augmentation of an acoustic grand piano. J New Music Res 39(3):189–202

    Article  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (mtop). Struct Multidiscip Optim 41(4):525–539

    Article  MathSciNet  MATH  Google Scholar 

  • Nishiwaki S, Saitou K, Min S, Kikuchi N (2000) Topological design considering flexibility under periodic loads. Struct Multidiscip Optim 19(1):4–16

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11

    Article  Google Scholar 

  • Reichel EK, Riesch C, Weiss B, Jakoby B (2008) A vibrating membrane rheometer utilizing electromagnetic excitation. Sens Actuator Phys 145:349–353

    Article  Google Scholar 

  • Rubio WM, Silva ECN, Paulino GH (2009) Toward optimal design of piezoelectric transducers based on multifunctional and smoothly graded hybrid material systems. J Intell Mater Syst Struct 20(14):1725–1746

    Article  Google Scholar 

  • Rubio WM, Paulino GH, Silva ECN (2011) Tailoring vibration mode shapes using topology optimization and functionally graded material concepts. Smart Mater Struct 20:025009

    Article  Google Scholar 

  • Shim H, Moon H, Wang S, Hameyer K (2008) Topology optimization for compliance reduction of magnetomechanical systems. IEEE Trans Magn 44(3):346–351

    Article  Google Scholar 

  • Silva ECN, Kikuchi N (1999) Design of piezoelectric transducers using topology optimization. Smart Mater Struct 8(3):350

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Kitamura M (2014) Phase field method to optimize dielectric devices for electromagnetic wave propagation. J Comput Phys 257PA:216–240

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Nishiwaki S, Kitamura M (2010) Shape and topology optimization based on the phasefield method and sensitivity analysis. J Comput Phys 229(7):2697–2718

    Article  MathSciNet  MATH  Google Scholar 

  • Takezawa A, Yoon GH, Jeong SH, Kobashi M, Kitamura M (2014) Structural topology optimization with strength and heat conduction constraints. Comput Meth Appl Mech Eng 276:341–361

    Article  MathSciNet  Google Scholar 

  • Tcherniak D (2002) Topology optimization of resonating structures using simp method. Int J Numer Methods Eng 54(11):1605–1622

    Article  MATH  Google Scholar 

  • Woodson HH, Melcher JR (1985) Electromechanical dynamics, part 2: fields, forces, and motion. Krieger Pub. Co, Malabar

    Google Scholar 

  • Yang B, Lee C, Kee WL, Lim SP (2010) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro/Nanolithogr MEMS MOEMS 9(2):023002

    Article  Google Scholar 

  • Yoo J (2002) Reduction of vibration caused by magnetic force in a switched reluctance motor by topology optimization. J Appl Mech 69(3):380–387

    Article  MATH  Google Scholar 

  • Yoo J, Kikuchi N (2002) Topology optimization for reduction of vibration caused by magnetic harmonic excitation. IEEE Trans Magn 38(6):3643–3649

    Article  Google Scholar 

  • Yoo J, Kikuchi N, Volakis JL (2000) Structural optimization in magnetic devices by the homogenization design method. IEEE Trans Magn 36(3):574–580

    Article  Google Scholar 

  • Zhang K, Zhang L, Fu L, Li S, Chen H, Cheng ZY (2013) Magnetostrictive resonators as sensors and actuators. Sens Actuator Phys 200:2–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Takezawa.

Appendix

Appendix

We provide details of the derivation of the sensitivity in (24) and the adjoint equation in (25). This sensitivity analysis is based on the procedure shown in Chapter 5 of (Allaire 2007). The general objective function with respect to magnetic potential \(({\mathbf {A}})\) and amplitude \({\mathbf {u}}\) is defined as \(J(\phi )=\int _{\varOmega }j({\mathbf {A}},\,{\mathbf {u}}) \text {d}x\). The derivative of this function in direction \(\theta\) is then:

$$\begin{aligned} \begin{aligned} \langle J'(\phi ),\theta \rangle&= \int j'({\mathbf {A}})\langle {\mathbf {A}}'(\phi ),\theta \rangle \text {d}s +\int j'({\mathbf {u}})\langle {\mathbf {u}}'(\phi ),\theta \rangle \text {d}s\\&= \int j'({\mathbf {A}})\bar{\mathbf{A}}\text {d}s+\int j'({\mathbf {u}})\bar{\mathbf{u}}\text {d}s \end{aligned} \end{aligned}$$
(33)

where \(\bar{\mathbf{A}}=\langle {\mathbf {A}}'(\phi ),\theta \rangle ,\ \bar{\mathbf{u}}=\langle {\mathbf {u}}'(\phi ),\theta \rangle\). Given adjoint variables \({\mathbf {p}}\) and \({\mathbf {q}}\) as test functions of the weak-form equations of state in (7) and (11), the Lagrangian is formulated as:

$$\begin{aligned} L(\phi ,{\mathbf {A}},{\mathbf {u}},\bar{\mathbf{A}},\bar{\mathbf{u}}) =\int j({\mathbf {A}},{\mathbf {u}}) \text {d}s+a({\mathbf {A}},{\mathbf {p}})+b({\mathbf {A}},{\mathbf {p}}) -l({\mathbf {p}})-d({\mathbf {u}},{\mathbf {q}})+e({\mathbf {u}},{\mathbf {q}})-m({\mathbf {A}},{\mathbf {q}}) \end{aligned}$$
(34)

Using this expression, the derivative of the objective function can be expressed as

$$\begin{aligned} \begin{aligned} \langle j'(\phi ),\theta \rangle&=\left\langle \frac{\partial L}{\partial \phi } (\phi ,{\mathbf {A}},{\mathbf {u}},\bar{\mathbf{A}},\bar{\mathbf{u}}),\theta \right\rangle +\left\langle \frac{\partial L}{\partial {\mathbf {A}}} (\phi ,{\mathbf {A}},{\mathbf {u}},\bar{\mathbf{A}},\bar{\mathbf{u}}), \langle {\mathbf {A}}'(\phi ),\theta \rangle \right\rangle \\&+\,\left\langle \frac{\partial L}{\partial {\mathbf {u}}} (\phi ,{\mathbf {A}},{\mathbf {u}},\bar{\mathbf{A}},\bar{\mathbf{u}}), \langle {\mathbf {u}}'(\phi ),\theta \rangle \right\rangle \\&=\left\langle \frac{\partial L}{\partial \phi } (\phi ,{\mathbf {A}},{\mathbf {u}},\bar{\mathbf{A}},\bar{\mathbf{u}}),\theta \right\rangle +\left\langle \frac{\partial L}{\partial {\mathbf {A}}}(\phi ,{\mathbf {A}},{\mathbf {u}}, \bar{\mathbf{A}},\bar{\mathbf{A}}),\bar{\mathbf{A}}\right\rangle \\&+\,\left\langle \frac{\partial L}{\partial {\mathbf {u}}} (\phi ,{\mathbf {A}},{\mathbf {u}},\bar{\mathbf{A}},\bar{\mathbf{u}}), \bar{\mathbf{u}}\right\rangle \\ \end{aligned} \end{aligned}$$
(35)

Consider if the second and third terms are zero. These terms are calculated as

$$\begin{aligned} \left\langle \frac{\partial L}{\partial {\mathbf {A}}},\bar{\mathbf{A}}\right\rangle &= \int j'({\mathbf {A}})\bar{{\mathbf{A}}}\text {d}x+da_A(\bar{\mathbf{A}},{\mathbf {p}}) +a(\bar{\mathbf{A}},{\mathbf {p}})+b(\bar{\mathbf{A}},{\mathbf {p}})-m(\bar{\mathbf{A}},{\mathbf {q}})=0 \end{aligned}$$
(36)
$$\begin{aligned} \left\langle \frac{\partial L}{\partial {\mathbf {u}}},\bar{\mathbf{u}}\right\rangle &= \int j'({\mathbf {u}})\bar{{\mathbf{u}}}\text {d}x-d(\bar{\mathbf{u}},{\mathbf {q}}) +e(\bar{\mathbf{u}},{\mathbf {q}})=0 \end{aligned}$$
(37)

where

$$\begin{aligned} da_A(\bar{\mathbf{A}},{\mathbf {p}}) =-\int _{\varOmega }\left( \nabla \times {\mathbf {p}}\right) ^{\text{T}} \left( \frac{\mu '({\mathbf {A}})}{\mu ^2}\nabla \times {\mathbf {A}}\right) \bar{\mathbf{A}}\text {d}x \end{aligned}$$
(38)

Hence, if the adjoint variables \({\mathbf {p}}\) and \({\mathbf {q}}\) satisfy the above adjoint equations, the second and third terms of (35) can be ignored. Alternatively, the derivatives of (7) and (11) with respect to \(\phi\) in the direction \(\theta\) are

$$\begin{aligned}&da_\phi ({\mathbf {A}},{\mathbf {p}})+da_A(\bar{\mathbf{A}},{\mathbf {p}})+a(\bar{\mathbf{A}},{\mathbf {p}})+b(\bar{\mathbf{A}},{\mathbf {p}})=0 \end{aligned}$$
(39)
$$\begin{aligned}&\quad - dd({\mathbf {u}},{\mathbf {q}})-d(\bar{\mathbf{u}},{\mathbf {q}})+de({\mathbf {u}},{\mathbf {q}})+e({\mathbf {u}},{\mathbf {q}})-m(\bar{\mathbf{A}},q)=0 \end{aligned}$$
(40)

where

$$\begin{aligned} da_\phi ({\mathbf {A}},{\mathbf {p}}) & = -\int _{\varOmega }\left( \nabla \times {\mathbf {p}}\right) ^{\text{T}}\left( \frac{\mu '(\phi )}{\mu ^2}\nabla \times {\mathbf {A}} \right) \theta \text {d}x \end{aligned}$$
(41)
$$\begin{aligned} dd({\mathbf {u}},{\mathbf {q}}) &= \omega ^2\int _{\varOmega }\rho '(\phi ) {\mathbf {u}}^{\text{T}}{\mathbf {q}} \theta \text {d}x \end{aligned}$$
(42)
$$\begin{aligned} de({\mathbf {u}},{\mathbf {q}}) &= \int _{\varOmega }\varvec{\varepsilon }({\mathbf {u}})^{\text{T}}{\mathbf {C}}'(\phi )\varvec{\varepsilon }({\mathbf {q}})\theta \text {d}x \end{aligned}$$
(43)

Substituting (39) and (40) into (36) and (37) and combining the equations, we then have

$$\begin{aligned} \begin{aligned}&\int j'({\mathbf {A}})\bar{\mathbf{A}} \text {d}s +\int j'({\mathbf {u}})\bar{\mathbf{u}} \text {d}x\\ =\,&da_\rho ({\mathbf {A}},{\mathbf {p}})-dd({\mathbf {u}},{\mathbf {q}})+de({\mathbf {u}},{\mathbf {q}}) \end{aligned} \end{aligned}$$
(44)

Substituting (44) into (33) yields

$$\begin{aligned} J'(\phi )=-\left( \nabla \times {\mathbf {p}}\right) ^{\text{T}}\left( \frac{\mu '(\phi )}{\mu ^2}\nabla \times {\mathbf {A}} \right) -\omega ^2 \rho '(\phi ) {\mathbf {u}}^{\text{T}}{\mathbf {q}}+\varvec{\varepsilon }({\mathbf {u}})^{\text{T}}{\mathbf {C}}'(\phi )\varvec{\varepsilon }({\mathbf {q}}) \end{aligned}$$
(45)

Substituting the dynamic compliance \(J=\int _{{\varGamma }_{mf}}{\mathbf {t}}({\mathbf {A}})^{\text{T}}{\mathbf {u}}\text {d} s=m({\mathbf {A}},{\mathbf {u}})\), we obtain the adjoint equations

$$\begin{aligned}&\int _{\varGamma }{\mathbf {t}}'({\mathbf {A}})\bar{\mathbf{A}}{\mathbf {u}}\text {d}s+a(\bar{\mathbf{A}},{\mathbf {p}})+da_A(\bar{\mathbf{A}},{\mathbf {p}})+b(\bar{\mathbf{A}},{\mathbf {p}})-m(\bar{\mathbf{A}},{\mathbf {q}})=0 \end{aligned}$$
(46)
$$\begin{aligned}&\quad m({\mathbf {A}},\bar{\mathbf{u}})-d(\bar{\mathbf{u}},{\mathbf {q}})+e(\bar{\mathbf{u}},{\mathbf {q}})=0 \end{aligned}$$
(47)

As (47) is the same as the state Eq. (11), \({\mathbf {p}}={\mathbf {u}}\). Substituting this into (45), the sensitivity in (24) is obtained whereas substituting the surface magnetic force \({\mathbf {t}}({\mathbf {A}})\) of (16) into (43), the adjoint equation in (25) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takezawa, A., Lee, J. & Kitamura, M. Design methodology of magnetic fields and structures for magneto-mechanical resonator based on topology optimization. Optim Eng 19, 19–38 (2018). https://doi.org/10.1007/s11081-017-9356-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-017-9356-3

Keywords

Navigation