Skip to main content
Log in

Reducing and monitoring round-off error propagation for symplectic implicit Runge-Kutta schemes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose an implementation of symplectic implicit Runge-Kutta schemes for highly accurate numerical integration of non-stiff Hamiltonian systems based on fixed point iteration. Provided that the computations are done in a given floating point arithmetic, the precision of the results is limited by round-off error propagation. We claim that our implementation with fixed point iteration is near-optimal with respect to round-off error propagation under the assumption that the function that evaluates the right-hand side of the differential equations is implemented with machine numbers (of the prescribed floating point arithmetic) as input and output. In addition, we present a simple procedure to estimate the round-off error propagation by means of a slightly less precise second numerical integration. Some numerical experiments are reported to illustrate the round-off error propagation properties of the proposed implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brouwer, D.: On the accumulation of errors in numerical integration. Astron. J. 46, 149–153 (1937). doi:10.1086/105423

    Article  Google Scholar 

  2. Dumitru, N.D.: Fast detection of chaotic or regular behavior of double pendulum system: application of the fast norm vector indicator method SEECCM III (South East European Conferentce on Computational Mechanics). doi:10.13140/2.1.5033.2969 (2013)

  3. Grazier, K., Newman, W., Hyman, J.M., Sharp, P.W., Goldstein, D.J.: Achieving Brouwer’s law with high-order stormer multistep methods. ANZIAM J. 46, 786–804 (2005). doi:10.21914/anziamj.v46i0.990

    Article  MathSciNet  MATH  Google Scholar 

  4. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31 Springer Science & Business Media. doi:10.1007/3-540-30666-8 (2006)

  5. Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit runge–kutta methods. BIT Numer. Math. 48(2), 231–243 (2008). doi:10.1007/s10543-008-0170-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Higham, N.J.: Accuracy and stability of numerical algorithms. Siam. doi:10.1137/1.9780898718027 (2002)

  7. Kahan, W.: Further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965)

    Article  Google Scholar 

  8. McLachlan, R.I., Atela, P.: The accuracy of symplectic integrators. Nonlinearity 5(2), 541 (1992). http://iopscience.iop.org/article/10.1088/0951-7715/5/2/011/meta

    Article  MathSciNet  MATH  Google Scholar 

  9. Muller, J., Brisebarre, N., De Dinechin, F., Jeannerod, C., Lefevre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of floating-point arithmetic. Springer Science & Business Media. doi:10.1007/978-0-8176-4705-6 (2009)

  10. Sanz Serna, J., Calvo, M.: Numerical Hamiltonian problems. Chapman and Hall (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikel Antoñana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antoñana, M., Makazaga, J. & Murua, A. Reducing and monitoring round-off error propagation for symplectic implicit Runge-Kutta schemes. Numer Algor 76, 861–880 (2017). https://doi.org/10.1007/s11075-017-0287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0287-z

Keywords

Navigation