Skip to main content
Log in

A sufficient condition for the stability of direct quadrature methods for Volterra integral equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Within the theoretical framework of the numerical stability analysis for the Volterra integral equations, we consider a new class of test problems and we study the long-time behavior of the numerical solution obtained by direct quadrature methods as a function of the stepsize. Furthermore, we analyze how the numerical solution responds to certain perturbations in the kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, C.: A perspective on the numerical treatment of Volterra equations. Numerical analysis 2000, vol. vi, ordinary differential equations and integral equations. J. Comput. Appl. Math. 125(1–2), 217–249 (2000). doi:10.1016/S0377-0427(00)00470-2

    Article  MathSciNet  Google Scholar 

  2. Brunner, H., van der Houwen, P.: The numerical solution of Volterra equations. North-Holland (1986)

  3. Burton, T.: Volterra integral and differential equations. Elsevier B. V., Amsterdam (2005)

    MATH  Google Scholar 

  4. Cardone, A., Messina, E., Vecchio, A.: An adaptive method for Volterra-Fredholm integral equations on the half line. J. Comput. Appl. Math. 228 (2), 538–547 (2009). doi:10.1016/j.cam.2008.03.036

    Article  MathSciNet  MATH  Google Scholar 

  5. Eggermont, P., Lubich, C.: Uniform error estimates of operational quadrature methods for nonlinear convolution equations on the half-line. Math. Comp 56(193), 149–176 (1991). doi:10.2307/2008535

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, Z., Xu, D., H.Z.: Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Bull. Math. Biol. 69 (5), 1511–1536 (2007). doi:10.1007/s11538-006-9174-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Ford, N., Baker, C.: Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type. J. Comput. Appl. Math. 66(1-2), 213–225 (1996). doi:10.1016/0377-0427(95)00180-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Gripenberg, G.: On the resolvents of nonconvolution Volterra kernels. Funkcial. Ekvac. 23(1), 83–95 (1980)

    MathSciNet  MATH  Google Scholar 

  9. Gripenberg, G., Londen, S.O., Staffans, O.: Volterra integral and functional equations. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  10. Győri, I., Reynolds, D.: On admissibility of the resolvent of discrete Volterra equations. J. Difference Equ. Appl. 16(12), 1393–1412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hartung, N.: Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discret. Contin. Dyn. Syst. - Ser. B 20(2), 445–467 (2015). doi:10.3934/dcdsb.2015.20.445

    Article  MathSciNet  MATH  Google Scholar 

  12. de Hoog, F., Anderssen, R.: Kernel perturbations for a class of second-kind convolution Volterra equations with non-negative kernels. Appl. Math. Lett. 25(9), 1222–1225 (2012). doi:10.1016/j.aml.2012.02.058

    Article  MathSciNet  MATH  Google Scholar 

  13. Linz, P.: Analytical and numerical methods for Volterra equations. SIAM, Philadelphia (1985)

    Book  MATH  Google Scholar 

  14. Lubich, C.: On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. Anal. 3(4), 439–465 (1983). doi:10.1093/imanum/3.4.439

    Article  MathSciNet  MATH  Google Scholar 

  15. Messina, E., Vecchio, A.: Nonlinear stability of direct quadrature methods for Volterra integral equations. Math. Comput. Simul. 110, 155–164 (2015). doi:10.1016/j.matcom.2013.04.007

    Article  MathSciNet  Google Scholar 

  16. Messina, E., Vecchio, A.: Stability and boundedness of numerical approximations to Volterra integral equations. Submitted (2016)

  17. Reynolds, D.W.: Parameter-dependent Volterra summation equations. In: The International Conference on Difference Equations and Applications. Private communication. Bialystok, Poland (2015)

  18. Strauss, A.: On a perturbed Volterra integral equation. J. Math. Anal. Appl. 30, 564–575 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vecchio, A.: Boundedness of the global error of some linear and nonlinear methods for Volterra integral equations. J. Integr. Equ. Appl. 12(4), 449–465 (2000). doi:10.1216/jiea/1020282238

    Article  MathSciNet  MATH  Google Scholar 

  20. Wolkenfelt, P.H.M.: Linear multistep methods and the construction of quadrature formulae for Volterra integral and integro-differential equations. Afdeling Numerieke Wiskunde [Department of Numerical Mathematics] 76 (1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Messina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messina, E., Vecchio, A. A sufficient condition for the stability of direct quadrature methods for Volterra integral equations. Numer Algor 74, 1223–1236 (2017). https://doi.org/10.1007/s11075-016-0193-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0193-9

Keywords

Mathematics Subject Classification (2010)

Navigation