Skip to main content
Log in

Two-derivative Runge-Kutta-Nyström methods for second-order ordinary differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Classical Runge-Kutta-Nyström (RKN) methods for second-order ordinary differential equations are extended to two-derivative Runge-Kutta-Nyström (TDRKN) methods involving the third derivative of the solution. A new version of Nyström tree theory and the corresponding B-series theory are developed, based on which the order conditions for TDRKN methods are derived. A two-stage explicit TDRKN method of order four and a three-stage explicit TDRKN method of order five are constructed. The linear stability of the new methods is analyzed. The results of numerical experiments show that the new TDRKN methods are more efficient than the traditional RKN methods of the same algebraic order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avdyushev, V.A.: Special perturbation theory methods in celestial mechanics, I. Principles for the construction and substantiation of the application. Russian Phys. J. 49, 1344–1253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bebernes, J., Eberly, D.: Mathematical Problems from Combustion Theory. Springer, New York (1989)

    Book  MATH  Google Scholar 

  3. Butcher, J.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  4. Butcher, J., Podhaisky, H.: On error estimation in general linear methods for stiff ODEs. Appl. Numer. Math. 56, 345–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18, 21–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge-Kutta methods. Numer. Algor. 53, 171–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–3311 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, Y., You, X.: New optimized two-derivative Runge-Kutta type methods for solving the radial Schrödinger equation. J. Math. Chem. 52, 240–254 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, Y., You, X., Ming, Q.: Exponentially fitted two-derivative Runge-Kutta methods for the Schrödinger equation. Int. J. Mod. Phys. C 24, 1–9 (2013). Article ID 1350073

    Article  MathSciNet  Google Scholar 

  10. Fang, X., You, X., Ming, Q.: Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations. Numer. Algor. 65, 651–667 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Franco, J.M.: Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Comm. 177, 479–492 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Franco, J.M.: New methods for oscillatory systems based on ARKN methods. Appl. Numer. Math. 56, 1040–1053 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Franco, J.M.: Runge-Kutta-Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Comm. 147, 770–787 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  15. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  16. Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model. 30, 466–476 (2006)

    Article  MATH  Google Scholar 

  17. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  18. Ismail, G.A.F., Ibrahim, I.H.: New efficient second derivative multistep methods for stiff systems. Appl. Math. Model. 23, 279–288 (1999)

    Article  MATH  Google Scholar 

  19. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations, An Introduction for Scientists and Engineers, 4th edn. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  20. Joseph, D., Sparrow, E.: Nonlinear diffusion induced by nonlinear sources. Q. Appl. Math. 28, 327–342 (1970)

    MathSciNet  MATH  Google Scholar 

  21. Kaplan, D., Glass, L.: Understanding Nonlinear Dynamics. Springer, New York (1995)

    Book  MATH  Google Scholar 

  22. Kastlunger, K.H., Wanner, G.: On Turan type implicit Runge-Kutta methods. Computing 9, 317–325 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kastlunger, K.H., Wanner, G.: Runge-Kutta processes with multiple nodes. Computing 9, 9–24 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kristensson, G.: Second Order Differential Equations: Special Functions and Their Classification. Springer, New York (2010)

    Book  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn. Butterworth-Heinemann (1982)

  26. Shintani, H.: On one-step methods utilizing the second derivative. Hiroshima. Math. J. 1, 349–372 (1971)

    MathSciNet  MATH  Google Scholar 

  27. Shintani, H.: On explicit one-step methods utilizing the second derivative. Hiroshima Math. J. 2, 353–368 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Simos, T.E., Vigo-Aguiar, J.: Exponentially fitted symplectic integrator. Phys. Rev. E 67, 1–7 (2003)

    Article  MathSciNet  Google Scholar 

  29. Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge-Kutta methods for PDEs using a novel discretization approach. Numer. Algor. 65, 687–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Urabe, M.: An implicit one-step method of high order accuracy for the numerical integration of ordinary differential equations. Numer. Math. 15, 151–164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  31. Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc., New York (1965)

    MATH  Google Scholar 

  32. Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  33. Yang, H., Wu, X., You, X., Fang, Y.: Extended RKN-type methods for numerical integration of perturbed oscillators. Comput. Phys. Comm. 180, 1777–1794 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. You, X., Fang, Y., Zhao, J.: Special extended Nyström tree theory for ERKN methods. J. Comput. Appl. Math. 263, 478–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. You, X., Zhao, J., Yang, H., Fang, Y., Wu, X.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algor. 66, 147–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Y., Che, H., Fang, Y., You, X.: A new trigonometrically fitted two-derivative Runge-Kutta method for the numerical solution of the Schrödinger equation and related problems. J. Appl. Math. 2013, 1–9 (2013). Article ID 937858

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Qiu, Z., Li, J. et al. Two-derivative Runge-Kutta-Nyström methods for second-order ordinary differential equations. Numer Algor 70, 897–927 (2015). https://doi.org/10.1007/s11075-015-9979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9979-4

Keywords

Mathematics Subject Classification (2010)

Navigation