Skip to main content
Log in

Numerical treatment of a well-posed Chebyshev Tau method for Bagley-Torvik equation with high-order of accuracy

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The main purpose of this study is to develop and analyze a new high-order operational Tau method based on the Chebyshev polynomials as basis functions for obtaining the numerical solution of Bagley-Torvik equation which has a important role in the fractional calculus. It is shown that some derivatives of the solutions of these equations have a singularity at origin. To overcome this drawback we first change the original equation into a new equation with a better regularity properties by applying a regularization process and thereby the operational Chebyshev Tau method can be applied conveniently. Our proposed method has two main advantages. First, the algebraic form of the Tau discretization of the problem has an upper triangular structure which can be solved by forward substitution method. Second, Tau approximation of the problem converges to the exact ones with a highly rate of convergence under a more general regularity assumptions on the input data in spite of the singularity behavior of the exact solution. Numerical results are presented which confirm the theoretical results obtained and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  2. Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26, 25–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhrawy, A.H., Baleano, D., Assas, L.M.: Efficient generalized Laguerre spectral methods for solving multi-term fractional differential equations on the half line. J. Vib. Contr. 20, 973–985 (2014)

    Article  MathSciNet  Google Scholar 

  4. Brunner, H.: Collocation Methods for Volterra and Related Functional Equations. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Çensiz, Y., Keskin, Y., Kurnaz, A.: The solution of the Bagley-Torvik equation with the generalized Taylor collocation method. J. Frank. Inst. 347, 452–466 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Čermak, J., Kisela, T.: Exact and descretized stability of the Bagley-Torvik equation. J. Comput. Appl. 269, 53–67 (2014)

    Article  MATH  Google Scholar 

  8. Chen, Y.Y., Tang, T.: Convergence analysis of the Jacobi spectral collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin, Heidelberg and New York (2010)

    Book  MATH  Google Scholar 

  10. Diethelm, K., Fod, N.J.: Numerical solution of the Bagley-Torvik equation. BIT 42(3), 490–507 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fitt, A.D., Goodwin, A.R.H., Ronaldson, K.A., Wakeham, W.A.: A fractional differential equation for a MEMS viscometer used in oil industry. J. Comput. Appl. Math. 229, 373–381 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghoreishi, F., Mokhtary, P.: Spectreal collocation method for multi-order fractional differential equations. Int. J. Comput. Math. 11(5), 23pp (2014)

    MathSciNet  Google Scholar 

  15. Ghoreishi, F., Hadizadeh, M.: Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations. Numer. Algorithms 52(4), 541–559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghoreishi, F., Yazdani, S.: An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis. Comput. Math. Appl. 61, 30–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amesterdam (2006)

    MATH  Google Scholar 

  18. Li, X., Tang, T.: Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China 7(1), 207–233 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luchko, Y., Gorenflo, R.: An operational method for solving fractional differential equations with Caputo derivatives. Acta Math. Vietnam. 24, 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

  20. Mokhtary, P., Ghoreishi, F.: The L 2-convergence of the Legendre spectral Tau matrix formulation for nonlinear fractional integro differential equations. Numer. Algorithms 58, 475–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mokhtary, P., Ghoreishi, F.: Convergence analysis of spectral Tau method for fractional Riccati differential equations. Bull. Iran. Math. Soc. 40(5), 1275–1290 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Mokhtary, P., Ghoreishi, F.: Convergence analysis of the operational Tau method for Abel-Type Volterra integral equations. Electron. Trans. Numer. Anal. 41, 289–305 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Mokhtary, P.: Operational Tau method for non-linear FDEs. Iran. J. Numer. Anal. Optim. 4(2), 43–55 (2014)

    MATH  Google Scholar 

  24. Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Müntz-Legendre Tau method for fractional differential equations. Appl. Math. Model. (2015). doi:10.1016/j.apm.2015.06.014

  25. Pedas, A., Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 235, 3502–3514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solutions and Some of Their Applications. Academic Press, San Diego-New York-London (1999)

  27. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods, Algorithms, Analysis and Applications. Springer, Berlin, Heidelberg and New York (2011)

    MATH  Google Scholar 

  28. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 294–298 (1984)

    Article  MATH  Google Scholar 

  29. Wang, Z.H., Wang, X.: General solution of the Bagley-Torvik equation with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 15, 1279–1285 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral Galerkin methods for Volterra type integral equations. J. Sci. Comput. doi:10.1007/s10915-012-9577-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mokhtary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtary, P. Numerical treatment of a well-posed Chebyshev Tau method for Bagley-Torvik equation with high-order of accuracy. Numer Algor 72, 875–891 (2016). https://doi.org/10.1007/s11075-015-0072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0072-9

Keywords

Mathematics Subject Classification (2010)

Navigation