Skip to main content
Log in

A deterministic sparse FFT algorithm for vectors with small support

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we consider the special case where a signal x \({\in }\,\mathbb {C}^{N}\) is known to vanish outside a support interval of length m < N. If the support length m of x or a good bound of it is a-priori known we derive a sublinear deterministic algorithm to compute x from its discrete Fourier transform \(\widehat {\mathbf x}\,{\in }\,\mathbb {C}^{N}\). In case of exact Fourier measurements we require only \({\mathcal O}\)(m \(\log \) m) arithmetical operations. For noisy measurements, we propose a stable \({\mathcal O}\)(m \(\log \) N) algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akavia, A.: Deterministic sparse Fourier approximation via fooling arithmetic progressions. In: Proc. 23rd COLT, pp. 381–393 (2010)

  2. Akavia, A.: Deterministic sparse Fourier approximation via approximating arithmetic progressions. IEEE Trans. Inform. Theory 60(3), 1733–1741 (2014)

    Article  MathSciNet  Google Scholar 

  3. Gilbert, A., Indyk, P., Iwen, M.A., Schmidt, L.: Recent developments in the sparse Fourier transform. IEEE Signal Process. Mag. 31(5), 91–100 (2014)

    Article  Google Scholar 

  4. Green, J.J.: Calculating the maximum modulus of a polynomial using Stečkin’s Lemma, SIAM. J. Numer. Anal 36(4), 1022–1029 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Near-optimal algorithm for sparse Fourier transform. In: Proceedings 44th annual ACM symposium on Theory of Computing, pp. 563–578 (2012)

  6. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse Fourier transform. In: Proceedings 23th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’12), pp. 1183–1194 (2012)

  7. Heider, S., Kunis, S., Potts, D., Veit, M.: A sparse Prony FFT. In: Proceedings 10th International Conference on Sampling Theory and Applications (SAMPTA), pp. 572–575 (2013)

  8. Indyk, P., Kapralov, M., Price, E.: (Nearly) sample-optimal Fourier transform. In: Proceedings 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 14), pp. 480–499 (2014)

  9. Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math 10, 303–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal 34, 57–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lawlor, D., Wang, Y., Christlieb, A.: Adaptive sub-linear time Fourier algorithms, Advances in Adaptive Data Analysis 5(1), 1350003 (25 pages) (2013)

  12. Pawar, S., Ramchandran, K.: Computing a k-sparse N-length discrete Fourier transform using at most 4k samples and \({\mathcal O}(k \log k)\) complexity. IEEE International Symposium on Information Theory, pp. 464–468 (2013)

  13. Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: A tutorial. In: Benedetto, J.J., Ferreira, P.J.S.G. (eds.) In Modern Sampling Theory: Mathematics and Applications, pp. 247–270. Birkhäuser, Boston, MA (2001)

  14. Plonka, G., Tasche, M.: Prony methods for recovery of structured functions. GAMM-Mitt 37(2), 239–258 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schumacher, J.: High performance sparse fast Fourier transform, Master Thesis, Computer Science. ETH Zürich, Switzerland (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlind Plonka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plonka, G., Wannenwetsch, K. A deterministic sparse FFT algorithm for vectors with small support. Numer Algor 71, 889–905 (2016). https://doi.org/10.1007/s11075-015-0028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0028-0

Keywords

Mathematics Subject Classification (2010)

Navigation