Skip to main content
Log in

Using generating functions to convert an implicit (3,3) finite difference method to an explicit form on diffusion equation with different boundary conditions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this article, our main goal is to develop an idea to convert an implicit (3,3) 𝜃-scheme finite difference method to an explicit form for both linear and nonlinear diffusion equations and also for nonlinear advection-diffusion equation with different boundary conditions. Accordingly, we assist power series generating functions which are a routine method in discrete mathematics. Also, the stability analysis of 𝜃–scheme to implement in nonlinear advection–diffusion equation has been investigated. Finally, the new approach has been implemented for Fisher, reaction–diffusion, Burgers and coupled Burgers equations as test problems to verify the ability and efficiency of the method proposed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barakat, H.Z., Clark, J.A.: On the solution of the diffusion equations by numerical methods, Transaction of the ASME. J. Heat Transf. 88, 421–427 (1966)

    Article  Google Scholar 

  2. Bastani, M., Salkuyeh, D.K.: A highly accurate method to solve Fisher’s equation. Pramana-J. Phys 78, 335–346 (2012)

    Article  Google Scholar 

  3. Boumenir, A.: Power series solutions for the KPP equation. Numer Algorithms 43, 177–187 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burgers, J.A.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  5. Campbell, L.J., Yin, B.: On the stability of alternating–direction explicit methods for advection–diffusion equations. Numer Methods Partial Differential Eq. 23, 1429–1444 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clavero, C., Lisbona, F.: Uniformly convergent finite difference methods for singularly perturbed problems with turning points. Numer Algorithms 4, 339–359 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M.: Quasi–implicit and two-level explicit finite-difference procedures for solving the one–dimensional advection equation. Appl. Math. Comput. 167, 46–67 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Hamidi, A., Shakourifar, M.: The solution of coupled Burgers’ equations using Adomian–Pade technique. Appl. Math. Comput. 189, 1034–1047 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Dehghan, M., Saray, B.N., Lakestani, M.: Mixed finite Galerkin methods for solving Burgers equations using interpolating scaling functions. Math. Method. Appl. 37, 894–912 (2014)

  10. Druskin, V., Knizhnerman, L.: Gaussian spectral rules for second order finite–difference schemes. Numer Algorithms 25, 139–159 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, D., Abdullah, A.: The group explicit method for the solution of Burgers equation. Computing 32, 239–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, D.J., Abdullah, A.R.: A new explicit method for the diffusion–convection equation. Comp. Math. Appl. 11, 145–154 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugenics 7, 355–69 (1937)

    Article  MATH  Google Scholar 

  14. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  15. Garvie, M.R.: Finite-difference schemes for reaction–diffusion equations modeling predator–prey interactions in Matlab. B. Math. Biol. 69, 931–956 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Heinrichs, W.: An adaptive spectral least-squares scheme for the Burgers equation. Numer. Algorithms 44, 1–10 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)

    Book  MATH  Google Scholar 

  18. in t Hout, K.J., Volders, K.: Stability of central finite difference schemes for the Heston PDE. Numer. Algorithms 60, 115–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kazem, S., Shaban, M., Rad, J.A.: Solution of the coupled Burgers equation based on operational matrices of d-dimensional orthogonal functions. Z. Naturforsch. 67a, 267–274 (2012)

    Google Scholar 

  20. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem. Bull. Moscow State Univ. Ser. A: Math. and Mech. 1, 1–25 (1937)

    Google Scholar 

  21. Larkin, B.K.: Some stable explicit difference approximation to the diffusion equation. Math. Comput. 18, 196–202 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liao, W.: An implicit fourth–order compact finite difference scheme for one–dimensional Burgers equation. Appl. Math. Comput. 206, 755–764 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Liao, W.: A fourth-order finite-difference method for solving the system of two-dimensional Burgers’ equations. Int. J. Numer. Meth. Fluids 64, 565–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liao, W.: A high–order, ADI finite difference scheme for a 3D reaction–diffusion equation with Neumann boundary condition. Numer. Methods Partial Differential Eq 29, 778–798 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liao, W., Zhu, J., Khaliq, A.: An efficient high–order algorithm for solving systems of reaction–diffusion equations. Numer. Methods Partial Differential Eq. 18, 340–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liao, W., Zhu, J., Khaliq, A.Q.M.: A fourth–order compact algorithm for nonlinear reaction–diffusion equations with Neumann boundary conditions. Numer. Methods Partial Differential Eq. 22, 600–616 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mackenzie, J., Madzvamuse, A.: Analysis of stability and convergence of finite difference methods for a reaction–diffusion problem on a one–dimensional growing domain. IMA J. Numer. Anal. 31, 212–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Madzvamuse, A., Maini, P.K.: Velocity–induced numerical solutions of reaction–diffusion systems on continuously growing domains. J. Comput. Phys. 225, 100–119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mittal, R., Arora, G.: Numerical solution of the coupled viscous Burgers’ equation. Commun. Nonlinear Sci. Numer. Simul. 16, 1304–1313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mittal, R., Jain, R.K.: Numerical solutions of nonlinear Burgers’ equation with modified cubic B–splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Mittal, R., Singhal, P.: Numerical solution of burger’s equation. Commun. Numer. Methods Eng. 9, 397–406 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mittal, R.C., Jiwari, R.: Numerical study of Fisher’s equation by using differential quadrature method. Int. J. Inform. Sys. Sci 5, 143–160 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Mittal, R.C., Kumar, S.: A numerical study of stationary solution of viscous Burgers’ equation using wavelet. Int. J. Comput. Math. 87, 1326–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection–dispersion equation. Numer. Algorithms 63, 431–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algorithms 61, 525–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1964)

    Google Scholar 

  37. Rosen, K.H., Michaels, J.G., Gross, J.L., Grossman, J.W., Shier, D.R.: Handbook of discrete and combinatorial mathematics, CRC Press LLC, London. New York (2000)

  38. V. K. Saulyev: Integration of Equations of Parabolic Type by the Method of Nets. Macmillan, New York (1964)

    Google Scholar 

  39. Smith, G.D.: Numerical Solution of Partial Diffrential Equations: Finite difference methods. Clarendon Press, Oxford (1985)

    Google Scholar 

  40. Stynes, M., Tobiska, L.: A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numer. Algorithms 18, 337–360 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Twizell, E.H., Wang, Y., Price, W.G., Fakhr, F.: Finite–difference methods for solving the reaction–diffusion equations of a simple isothermal chemical system. Numer. Methods Partial Differential Eq 10, 435–454 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  42. ul Islam, S.S., Haq, M.U.: A meshfree interpolation method for the numerical solution of the coupled nonlinear partial differential equations. Eng. Anal. Bound. Elem 33, 399–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zeldovich, Y., Frank-Kamenetskii, D.A.: A theory of thermal propagation of flame. Acta Physicochim USSR 9, 41–50 (1938)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hatam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazem, S., Chadwick, E., Hatam, A. et al. Using generating functions to convert an implicit (3,3) finite difference method to an explicit form on diffusion equation with different boundary conditions. Numer Algor 71, 827–854 (2016). https://doi.org/10.1007/s11075-015-0026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0026-2

Keywords

Mathematics Subject Classifications (2010)

Navigation