Skip to main content
Log in

Alternating direction method for the high-order total variation-based Poisson noise removal problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The restoration of blurred images corrupted by Poisson noise is an important task in various applications such as astronomical imaging, electronic microscopy, single particle emission computed tomography (SPECT) and positron emission tomography (PET). The problem has received significant attention in recent years. Total variation (TV) regularization, one of the standard regularization techniques in image restoration, is well known for recovering sharp edges of an image, but also for producing staircase artifacts. In order to remedy the shortcoming of TV in Poissonian image restoration, we consider a high-order total variation-based optimization model. The optimization model is converted to a constrained problem by variable splitting and then is addressed with the alternating direction method. Numerical results from the Poisson noise removal problem are given to illustrate the validity and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrew, H., Hunt, B.: Digital Image Restoration. Prentice-Hall, Englewood Cliffs (1977)

    Google Scholar 

  2. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging, Inst. of Physics Publ. London (1998)

  3. Chan, T.F., Shen, J.H.: Image Processing and Analysis: variational, PDE, wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)

  4. Banham, M., Katsaggelos, A.: Digital image restoration. IEEE Signal Proc. Mag. 14(2), 24–41(1997)

    Article  Google Scholar 

  5. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  6. Bertero, M., Boccacci, P., Desiderà, G., Vicidomini, G.: Image deblurring with Poisson data: from cells to galaxies. Inverse Problems 25, 123006 (2009). (26pp)

    Article  MathSciNet  Google Scholar 

  7. Bardsley, J.M., Goldes, J.: Techniques for regularization parameter and hyper-parameter selection in PET and SPECT imaging. Inverse Problems in Science and Engineering 19(2), 267–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bardsley, J.M., Goldes, J.: Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Problems 25, 095005 (2009). (18pp)

    Article  MathSciNet  Google Scholar 

  9. Chen, D.Q., Cheng, L.Z.: Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring. Inverse Problems 28, 015004 (2012). (24pp)

    Article  MathSciNet  Google Scholar 

  10. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

    Article  MathSciNet  Google Scholar 

  11. Csiszär, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19(4), 2032–2066 (1991)

    Article  Google Scholar 

  12. Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Amer. 62(1), 55–59 (1972)

    Article  Google Scholar 

  13. Lucy, L.B.: An iterative technique for rectification of observed distributions. Astron. J. 79(6), 745–765 (1974)

    Article  Google Scholar 

  14. Carlavan, M., Blanc-Féraud, L.: Sparse poisson noisy image deblurring. IEEE Trans. Image Process. 21(4), 1834–1846 (2012)

    Article  MathSciNet  Google Scholar 

  15. Landi, G., Piccolomini, E.L.: NPTool: a Matlab software for nonnegative image restoration with Newton projection methods. Numer. Algorithm. 62(3), 487–504 (2013)

    Article  MATH  Google Scholar 

  16. Tikhonov, A., Arsenin, V.: Solution of Ill-Poised Problems. Winston, Washington (1977)

    Google Scholar 

  17. Bardsley, J.M., Vogel, C.R.: A nonnnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 25(4), 1326–1343 (2004)

    Article  MathSciNet  Google Scholar 

  18. Bardsley, J.M., Laobeula, N.: Tikhonov regularized Poisson likelihood estimation: theoretical justification and a computational method. Inverse Problems in Science and Engineering 16(2), 199–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Landi, G., Piccolomini, E.L.: An improved Newton projection method for nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization. Numer. Algorithm. 60, 169–188 (2012)

    Article  MATH  Google Scholar 

  20. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  21. Agrwal, V., Gribok, A.V., Abidi, M.A.: Image restoration using L1 norm penalty function. Inverse Problems in Science and Engineering 15(8), 785–809 (2007)

    Article  MathSciNet  Google Scholar 

  22. Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19, 3133–3145 (2010)

    Article  MathSciNet  Google Scholar 

  23. Bardsley, J.M., Luttman, A.: Total variation-penalized Poisson likelihood estimation for ill-posed problems. Adv. Comput. Math. 31(1), 35–59 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image R. 21, 193–199 (2010)

    Article  Google Scholar 

  25. Chen, D.Q., Cheng, L.Z.: Deconvolving Poissonian images by a novel hybrid variational model. J. Vis. Commun. Image R. 22, 643–652 (2011)

    Article  Google Scholar 

  26. Landi, G., Piccolomini, E.L.: An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noise. Comput. Med. Imaging Graph. 36, 38–46 (2012)

    Article  Google Scholar 

  27. Chambolle, A., Lions, P.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chan, T., Esedoglu, S., Park, F.: Image decomposition combining staircase reduction and texture extraction. J. Vis. Commun. Image R. 18(6), 464–486 (2007)

    Article  Google Scholar 

  29. Benning, M., Brune, C., Burger, M., Muller, J.: Higher-order TV methodsenhancement via Bregman iteration. J. Sci. Comput. 54(2-3), 269–310 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans. Image Process. 21(3), 983–995 (2012)

    Article  MathSciNet  Google Scholar 

  31. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12 (12), 1579–1590 (2003)

    Article  MATH  Google Scholar 

  32. Steidl, G.: A note on the dual treatment of higher order regularization functionals. Computing 76, 135–148 (2005)

    Article  MathSciNet  Google Scholar 

  33. Chen, H.Z., Song, J.P., Tai, X.C.: A dual algorithm for minimization of the LLT model. Adv. Comput. Math. 31, 115–130 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Li, F., Shen, C.M., Fan, J.S., Shen, C.L.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image R. 18, 322–330 (2007)

    Article  Google Scholar 

  35. Lysker, M., Tai, X.C.: Iterative image restoration combining total varition minimization and a second-order functional. Int. J. Comput. Vis. 66(1), 5–18 (2006)

    Article  Google Scholar 

  36. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 48(2), 308–338 (2014)

    Article  MATH  Google Scholar 

  37. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wu, C.L., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high Order Models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ye, C.H., Yuan, X.M.: A descent method for structured monotone variational inequalities. Optimization Methods and Software 22, 329–338 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Let. 23, 151–161 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. He, B.S., Tao, M., Yuan, X.M.: Alternating direction method with Gaussian back substitution for separable convex programming. SIAM J. Optim. 22, 313–340 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wang, Y.L., Yang, J.F, Yin, W.T., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Ng, M.K., Chan, R., Tang, W.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (2000)

    Article  MathSciNet  Google Scholar 

  45. Eckstein, J., Bertsekas, D.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 5, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  46. Zhou, W.F., Li, Q.G.: Abstract and Applied Analysis, 965281 (2012). (14pp)

  47. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  48. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  49. Nagy, J.G., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a Matlab object-oriented approach. Numer. Algorithm. 36, 73–93 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient gradient projection methods for edge-preserving removal of Poisson noise. Inverse Problems 25, 045010 (2009). (24pp)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Guang Lv.

Additional information

This research is supported by NSFC (61370147, 61401172), Sichuan Province Sci. & Tech. Research Project (2012GZX0080), Nature Science Foundation of Jiangsu Province (BK20131209), Postdoctoral Research Funds (2013M540454, 1301064B).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Huang, J., Lv, XG. et al. Alternating direction method for the high-order total variation-based Poisson noise removal problem. Numer Algor 69, 495–516 (2015). https://doi.org/10.1007/s11075-014-9908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9908-y

Keywords

Navigation