Skip to main content
Log in

A posteriori error estimates of krylov subspace approximations to matrix functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Krylov subspace methods for approximating a matrix function f(A) times a vector v are analyzed in this paper. For the Arnoldi approximation to e τA v, two reliable a posteriori error estimates are derived from the new bounds and generalized error expansion we establish. One of them is similar to the residual norm of an approximate solution of the linear system, and the other one is determined critically by the first term of the error expansion of the Arnoldi approximation to e τA v due to Saad. We prove that each of the two estimates is reliable to measure the true error norm, and the second one theoretically justifies an empirical claim by Saad. In the paper, by introducing certain functions ϕ k (z) defined recursively by the given function f(z) for certain nodes, we obtain the error expansion of the Krylov-like approximation for f(z) sufficiently smooth, which generalizes Saad’s result on the Arnoldi approximation to e τA v. Similarly, it is shown that the first term of the generalized error expansion can be used as a reliable a posteriori estimate for the Krylov-like approximation to some other matrix functions times v. Numerical examples are reported to demonstrate the effectiveness of the a posteriori error estimates for the Krylov-like approximations to e τA v, cos(A)v and sin(A)v.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York (1964)

    MATH  Google Scholar 

  2. Afanasjew, M., Eiermann, M., Ernst, O.G., Güttel, S.: A generalization of the steepest descent method for matrix functions, Electron. Trans. Numer. Anal. 28, 206–222 (2008)

    Google Scholar 

  3. Afanasjew, M., Eiermann, M., Ernst, O.G., Güttel, S.: Implementation of a restarted krylov subspace method for the evaluation of matrix functions. Linear Algebra Appl. 429, 229–314 (2008)

    Article  Google Scholar 

  4. Beattie, C., Embree, M., Rossi, J.: Convergence of restarted krylov subspaces to invariant subspaces. SIAM J. Matrix Anal. Appl. 25, 1074–1109 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bergamaschi, L., Vianello, M.: Efficient computation of the exponential operator for large, sparse, symmetric matrices. Numer. Linear Algebra Appl. 7, 27–45 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Botchev, M.A., Grimm, V., Hochbruck, M.: Residuals, restarting and Richardson iteration for the matrix exponential. SIAM J. Sci. Comput. 35, 1376–1397 (2013)

    Article  MathSciNet  Google Scholar 

  7. Dekker, K., Verwer, J.G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations. Amsterdam (1984)

  8. Diele, F., Moret, I., Ragni, S.: Error estimates for polynomial krylov approximations to matrix functions. SIAM J. Matrix Anal. Appl. 30, 1546–1565 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Druskin, V.L., Knizhnerman, L.A.: Two polynomial methods of calculating functions of symmetric matrices. Comput. Math. Math. Phys. 29, 112–121 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Druskin, V.L., Knizhnerman, L.A.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 775–771 (1998)

    Article  MathSciNet  Google Scholar 

  11. Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix functions. SIAM J. Numer. Anal. 44, 2481–2504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eiermann, M., Ernst, O.G., Güttel, S.: Deflated restarting for matrix functions. SIAM J. Matrix Anal. Appl. 32, 621–641 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eshof, J.V., Hochbruck, M.: Preconditioning Lanczos approximations to the matrix exponential. SIAM J. Sci. Comput. 27, 1438–1457 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frommer, A.: Monotone convergence of the Lanczos approximations to matrix functions of Hermitian matrices. Electron Trans. Numer. Anal. 35, 118–128 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation method. SIAM J. Sci. Statist. Comput. 13, 1236–1264 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Higham, N.J.: Functions of matrices. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  17. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Topics in matrix analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  20. Ilić, M., Turner, I.W., Simpson, D.P.: A restarted lanczos approximation to functions of a symmetric matrix. IMA J. Numer. Anal. 30, 1044–1061 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lopez, L., Simoncini, V.: Analysis of projection methods for rational function approximation to the matrix exponential. SIAM J. Numer. Anal. 44, 613–635 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Moret, I., Novati, P.: An interpolatory approximation of the matrix exponential based on faber polynomials. Comput. Appl. Math. 131, 361–380 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Moret, I., Novati, P.: Interpolating functions of matrices on zeros of quasi-kernel polynomials. Numer. Linear Algebra Appl. 12, 337–353 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Morgan, R.B.: A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl. 16, 1154–1171 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Morgan, R.B.: GMRES with deflated restarting. SIAM J. Sci. Comput. 24, 20–37 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Novati, P.: A method based on fejér points for the computation of functions of nonsymmetric matrices. Appl. Numer. Math. 44, 201–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Parlett, B.N.: Global convergence of the basic QR algorithm on hessenberg matrices. Math. Comp. 22, 803–817 (1968)

    MATH  MathSciNet  Google Scholar 

  28. Philippe, B., Sidje, R. B.: Transient solutions of markov processes by krylov subspaces. INRIA TR No.1989 (1993) http://hal.archives-ouvertes.fr/docs/00/07/46/ 83/PDF/RR-1989.pdf

  29. Saad, Y.: Analysis of some krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  30. Saad, Y.: Iterative method for sparse linear systems. 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  31. Sidje, R.B.: Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Software 24, 130–156 (1998)

    Article  MATH  Google Scholar 

  32. Sorensen, D.C.: Implicit application of polynomial filters in a k-step arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stewart, D.E., Leyk, T.S.: Error estimates for krylov subspace approximations of matrix exponentials. Comput. Appl. Math. 72, 359–369 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stewart, G.W., Krylov-Schur, A.: algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23, 601–614 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ström, T.: On logarithmic norms. SIAM J. Numer. Anal. 12, 741–753 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tal-Ezer, H.: Spectral methods in time for parabolic problems. SIAM J. Numer. Anal. 26, 1–11 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tal-Ezer, H.: On restart and error estimation for krylov approximation of w = f(A)v, SIAM J. Sci. Comput. 29, 2426–2441 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. van den Eshof, J., Frommer, T.L.A., van der Vorst, H.A.: Numerical methods for the QCD overlap operator. I. Sign-function and error bounds. Comput. Phys. Comm. 146, 203–224 (2002)

    Article  MATH  Google Scholar 

  39. Ye, Q.: Error bounds for the lanczos methods for approximating matrix exponentials. SIAM J. Numer. Anal. 51, 68–87 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, P.: Iterative methods for computing eigenvalues and exponentials of large matrices. Ph.D. thesis, Department of Mathematics, University of Kentucky, Lexington (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiao Jia.

Additional information

Supported in part by National Basic Research Program of China 2011CB302400 and National Science Foundation of China (No. 11371219).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Lv, H. A posteriori error estimates of krylov subspace approximations to matrix functions. Numer Algor 69, 1–28 (2015). https://doi.org/10.1007/s11075-014-9878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9878-0

Keywords

AMS Subject Classifications (2010)

Navigation