Skip to main content
Log in

Optimal homotopy analysis and control of error for solutions to the non-local Whitham equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The Whitham equation is a non-local model for nonlinear dispersive water waves. Since this equation is both nonlinear and non-local, exact or analytical solutions are rare except for in a few special cases. As such, an analytical method which results in minimal error is highly desirable for general forms of the Whitham equation. We obtain approximate analytical solutions to the non-local Whitham equation for general initial data by way of the optimal homotopy analysis method, through the use of a partial differential auxiliary linear operator. A method to control the residual error of these approximate solutions, through the use of the embedded convergence control parameter, is discussed in the context of optimal homotopy analysis. We obtain residual error minimizing solutions, using relatively few terms in the solution series, in the case of several different kernels and associated initial data. Interestingly, we find that for a specific class of initial data, there exists an exact solution given by the first term in the homotopy expansion. A specific example of initial data which satisfies the condition producing an exact solution is included. These results demonstrate the applicability of optimal homotopy analysis to equations which are simultaneously nonlinear and non-local.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Springer, Boston (2005)

  2. Naumkin, P.I., Shishmarev, I.A.: Nonlinear Nonlocal Equations in the Theory of Waves. American Mathematical Society, Providence (1994)

  3. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York (1974)

  4. Fornberg, B., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 289, 373–404 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 299, 6–25 (1967)

    Article  MATH  Google Scholar 

  6. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zhou, J., Tian, L.: A type of bounded traveling wave solutions for the Fornberg-Whitham equation. J. Math. Anal. Appl. 346, 255–261 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kaikina, E.I.: Nonlinear nonlocal Whitham equation on a segment. Nonlinear Anal. Theor. Method. Appl. 59, 55–83 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, H.: Wave breaking in a class of nonlocal dispersive wave equations. J. Nonlinear Math. Phys. 13, 441–466 (2006)

    Article  MathSciNet  Google Scholar 

  10. Gupta, P.K., Singh, M.: Homotopy perturbation method for fractional Fornberg-Whitham equation. Comput. Math. Appl. 61, 250–254 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Abidi, F., Omrani, K.: The homotopy analysis method for solving the Fornberg-Whitham equation and comparison with Adomian’s decomposition method. Comput. Math. Appl. 59, 2743–2750 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liao, S.J.: On the proposed homotopy analysis techniques for nonlinear problems and its application. Ph.D. dissertation, Shanghai Jiao Tong University (1992)

  13. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  14. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlinear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  15. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  17. Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14, 983–997 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Springer & Higher Education Press, Heidelberg (2012)

    Book  MATH  Google Scholar 

  19. Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach. Commun. Nonlinear Sci. Numer. Simul. 14, 4078–4089 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2315–2332 (2010)

    Google Scholar 

  21. Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360, 109–113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Abbasbandy, S.: Homotopy analysis method for heat radiation equations. Int. Commun. Heat Mass Transf. 34, 380–387 (2007)

    Article  MathSciNet  Google Scholar 

  23. Liao, S.J., Su, J., Chwang, A.T.: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body. Int. J. Heat Mass Transf. 49, 2437–2445 (2006)

    Article  MATH  Google Scholar 

  24. Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlinear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  26. Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Akyildiz, F.T., Vajravelu, K., Mohapatra, R.N., Sweet, E., Van Gorder, R.A.: Implicit differential equation arising in the steady flow of a Sisko fluid. Appl. Math. Comput. 210, 189–196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hang, X., Lin, Z.L., Liao, S.J., Wu, J.Z., Majdalani, J.: Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids 22, 053601 (2010)

    Article  Google Scholar 

  30. Sajid, M., Hayat, T., Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  32. Turkyilmazoglu, M.: Purely analytic solutions of the compressible boundary layer flow due to a porous rotating disk with heat transfer. Phys. Fluids 21, 106104 (2009)

    Article  Google Scholar 

  33. Abbasbandy, S., Zakaria, F.S.: Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wu, W., Liao, S.J.: Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos Solitons Fractals 26, 177–185 (2005)

    Article  MATH  Google Scholar 

  35. Sweet, E., Van Gorder, R.A.: Analytical solutions to a generalized Drinfel’d-Sokolov equation related to DSSH and KdV6. Appl. Math. Comput. 216, 2783–2791 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wu, Y., Wang, C., Liao, S.J.: Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method. Chaos Solitons Fractals 23, 1733–1740 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Cheng, J., Liao, S.J., Mohapatra, R.N., Vajravelu, K.: Series solutions of Nano-boundary-layer flows by means of the homotopy analysis method. J. Math. Anal. Appl. 343, 233–245 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Van Gorder, R.A., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Phys. Lett. A 371, 72–82 (2007)

    Article  MATH  Google Scholar 

  40. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear Sci. Numer. Simul. 14, 1121–1131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equation. Phys. Lett. A 372, 6060–6065 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Liao, S.: A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142, 1–16 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Van Gorder, R.A.: Analytical method for the construction of solutions to the Föppl - von Kármán equations governing deflections of a thin flat plate. Int. J. Non-Linear Mech. 47, 1–6 (2012)

    Article  Google Scholar 

  44. Van Gorder, R.A.: Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function H (x) in the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 17, 1233–1240 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ghoreishi, M., Ismail, A.I.B., Alomari, A.K., Sami Bataineh, A.: The comparison between Homotopy Analysis Method and Optimal Homotopy Asymptotic Method for nonlinear age-structured population models. Commun. Nonlinear Sci. Numer. Simul. 17, 1163–1177 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Abbasbandy, S., Shivanian, E., Vajravelu, K.: Mathematical properties of h-curve in the frame work of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 16, 4268–4275 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Van Gorder, R.A.: Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numer. Algor. 61, 613–629 (2012)

    Article  MATH  Google Scholar 

  48. Mallory, K., Van Gorder, R.A.: Control of error in the homotopy analysis of solutions to the Zakharov system with dissipation. Numer. Algor. (2013) in press. doi:10.1007/s11075-012-9683-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallory, K., Van Gorder, R.A. Optimal homotopy analysis and control of error for solutions to the non-local Whitham equation. Numer Algor 66, 843–863 (2014). https://doi.org/10.1007/s11075-013-9765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9765-0

Keywords

Navigation