Skip to main content
Log in

Application of denoising methods to regularizationof ill-posed problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Linear systems of equations and linear least-squares problems with a matrix whose singular values “cluster” at the origin and with an error-contaminated data vector arise in many applications. Their numerical solution requires regularization, i.e., the replacement of the given problem by a nearby one, whose solution is less sensitive to the error in the data. The amount of regularization depends on a parameter. When an accurate estimate of the norm of the error in the data is known, this parameter can be determined by the discrepancy principle. This paper is concerned with the situation when the error is white Gaussian and no estimate of the norm of the error is available, and explores the possibility of applying a denoising method to both reduce this error and to estimate its norm. Applications to image deblurring are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björck, Å.: A bidiagonalization algorithm for solving ill-posed system of linear equations. BIT 28, 659–670 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms 51, 61–76 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang, S.G.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. D’Agostino, R., Pearson, E.S.: Tests for departure from normality. Empirical results for the distributions of b2 and \(\sqrt {b1}\). Biometrika 60, 613–622 (1973)

    MATH  MathSciNet  Google Scholar 

  5. D’Agostino, R., Tietjen, G.L.: Simulation probability points of b2 for small samples. Biometrika 58, 669–672 (1971)

    MATH  Google Scholar 

  6. Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Donoho, D., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 91, 1200–1224 (1995)

    Article  MathSciNet  Google Scholar 

  8. Eldén, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT 17, 134–145 (1977)

    Article  MATH  Google Scholar 

  9. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  10. Fisher, R.A.: The moments of the distribution for normal samples of measures of departure from normality. Proc. R. Soc. Lond. Ser. A 130, 16–28 (1930)

    Article  MATH  Google Scholar 

  11. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1988)

    Google Scholar 

  13. Hansen, P.C., Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithm. 46, 189–194 (2007)

    Article  MATH  Google Scholar 

  14. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT 46, 41–59 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hearn, T.A., Reichel, L.: Image Denoising via Residual Kurtosis Minimization. Submitted for publication.

  16. Hochstenbach, M.E., McNinch, N., Reichel, L.: Discrete ill-posed least-squares problems with a solution norm constraint. Linear Algebra Appl. 436, 3801–3818 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  18. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MATH  MathSciNet  Google Scholar 

  19. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995). First published by Prentice-Hall in 1974

    Book  MATH  Google Scholar 

  20. Mead, J., Renaut, R.A.: A Newton root-finding algorithm for estimating the regularization parameter for solving ill-conditioned least squares problems. Inverse Probl. 25, 025002 (2009)

    Article  MathSciNet  Google Scholar 

  21. Morigi, S., Reichel, L., Sgallari, F.: Noise-reducing cascadic multilevel methods for linear discrete ill-posed problems. Numer. Algorithm. 53, 1–22 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Morigi, S., Reichel, L., Sgallari, F.: Cascadic multilevel methods for fast nonsymmetric blur- and noise-removal. Appl. Numer. Math. 60, 378–396 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morigi, S., Reichel, L., Sgallari, F.: A cascadic alternatingKrylov subspace image restoration method. In: Kuijper, A. et al., (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 98–108. Springer, Berlin (2013)

  24. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  25. Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear discrete ill-posed problems. Linear Algebra Appl. 436, 3974–3990 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Neuman, A., Reichel, L., Sadok, H.: Algorithms for range restricted iterative methods for linear discrete ill-posed problems. Numer. Algorithm. 59, 325–331 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithm. 63, 65–87 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D. 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  29. Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Research supported in part by NSF grant DMS-1115385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hearn, T.A., Reichel, L. Application of denoising methods to regularizationof ill-posed problems. Numer Algor 66, 761–777 (2014). https://doi.org/10.1007/s11075-013-9760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9760-5

Keywords

Navigation