Skip to main content
Log in

Fast solvers for discretized Navier-Stokes problems using vector extrapolation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We discuss the design and implementation of a vector extrapolation method for computing numerical solutions of the steady-state Navier-Stokes equation system. We describe a “proof of concept” implementation of vector extrapolation, and we illustrate its effectiveness when integrated into the Incompressible Flow Iterative Solution Software (IFISS) package ( http://www.manchester.ac.uk/ifiss).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezinski, C.: Généralisation de la transformation de Shanks, de la table de Padé et de l’epsilon-algorithm. Calcolo 12, 317–360 (1975)

    Article  MathSciNet  Google Scholar 

  2. Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods Theory and Practice. North-Holland, Amsterdam (1991)

    MATH  Google Scholar 

  3. Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Duminil, S., Sadok, H.: Reduced rank extrapolation applied to electronic structure computations. Electron. Trans. Numer. Anal. 38, 347–362 (2011)

    MathSciNet  Google Scholar 

  5. Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P.C.C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp. 387–396. Academic Press, New-York (1979)

  6. Elman, H., Ramage, A., Silvester, D.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)

    Article  MathSciNet  Google Scholar 

  7. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: Eith Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005). ISBN: 978-0-19-852868-5; 0-19-852868-X

    Google Scholar 

  8. Gresho, P.M., Gartling, D.K., Torczynski, J.R., Cliffe, K.A., Winters, K.H., Garratt, T.J., Spence, A., Goodrich, J.W.: Is the steady viscous incompressible 2D flow over a backward facing step at Re = 800 stable. Int. J. Numer. Methods Fluids 17, 501–541 (1993)

    Article  MATH  Google Scholar 

  9. Jbilou, K.: A general projection algorithm for solving linear systems of equations. Numer. Algoritm. 4, 361–377 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jbilou, K., Reichel, L., Sadok, H.: Vector extrapolation enhanced TSVD for linear discrete ill-posed problems. Numer. Algoritm. 51, 195–208 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jbilou, K., Sadok, H.: Some results about vector extrapolation methods and related fixed point iterations. J. Comput. Appl. Math. 36, 385–398 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jbilou, K., Sadok, H.: Vector extrapolation methods. Applications and numerical comparison. J. Comp. Appl. Math. 122, 149–165 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mes̀ina M.: Convergence acceleration for the iterative solution of x = Ax + f. Comput. Methods Appl. Mech. Eng. 10(2), 165–173 (1977)

    Article  MathSciNet  Google Scholar 

  16. Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations. U.S.S.R. Comput. Math. Math. Phys. 17, 199–207 (1978)

    Article  Google Scholar 

  17. Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37, 105–126 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sidi, A.: Extrapolation vs. projection methods for solving linear systems of equations. J. Comput. Appl. Math. 22, 71–88 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305–337 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sidi, A.: Vector extrapolation methods with applications to solution of large systems of equations and to Page rank computations. Comput. Math. Appl. 56, 1–24 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Silvester, D., Elman, H., Ramage, A.: Incompressible Flow and Iterative Solver Software (IFISS) version 3.2. Available online at http://www.manchester.ac.uk/ifiss (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Sadok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duminil, S., Sadok, H. & Silvester, D. Fast solvers for discretized Navier-Stokes problems using vector extrapolation. Numer Algor 66, 89–104 (2014). https://doi.org/10.1007/s11075-013-9726-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9726-7

Keywords

Navigation