Skip to main content
Log in

Monotone convergence of Newton-like methods for M-matrix algebraic Riccati equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For the algebraic Riccati equation whose four coefficient matrices form a nonsingular M-matrix or an irreducible singular M-matrix K, the minimal nonnegative solution can be found by Newton’s method and the doubling algorithm. When the two diagonal blocks of the matrix K have both large and small diagonal entries, the doubling algorithm often requires many more iterations than Newton’s method. In those cases, Newton’s method may be more efficient than the doubling algorithm. This has motivated us to study Newton-like methods that have higher-order convergence and are not much more expensive each iteration. We find that the Chebyshev method of order three and a two-step modified Chebyshev method of order four can be more efficient than Newton’s method. For the Riccati equation, these two Newton-like methods are actually special cases of the Newton–Shamanskii method. We show that, starting with zero initial guess or some other suitable initial guess, the sequence generated by the Newton–Shamanskii method converges monotonically to the minimal nonnegative solution.We also explain that the Newton-like methods can be used to great advantage when solving some Riccati equations involving a parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.-Z., Guo, X.-X., Xu, S.-F.: Alternately linearized implicit iteration methods for the minimal nonnegative solutions of the nonsymmetric algebraic Riccati equations. Numer. Linear Algebra Appl. 13, 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels, R.H., Stewart, G.W.: Solution of the matrix equation AX + XB = C. Commun. ACM 15, 820–826 (1972)

    Article  Google Scholar 

  3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Revised Reprint of the 1979 Academic Press Original. SIAM, Philadelphia (1994)

    Google Scholar 

  4. Bini, D.A., Iannazzo, B., Latouche, G., Meini, B.: On the solution of Riccati equations arising in fluid queues. Linear Algebra Appl. 413, 474–494 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. SIAM, Philadelphia (2012)

    MATH  Google Scholar 

  6. Bini, D.A., Meini, B., Poloni, F.: Transforming algebraic Riccati equations into unilateral quadratic matrix equations. Numer. Math. 116, 553–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45, 355–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chiang, C.-Y., Chu, E.K.-W., Guo, C.-H., Huang, T.-M., Lin, W.-W., Xu, S.-F.: Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl. 31, 227–247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, Y.-H., Bai, Z.-Z.: On inexact Newton methods based on doubling iteration scheme for non-symmetric algebraic Riccati equations. Numer. Linear Algebra Appl. 18, 325–341 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Golub, G.H., Nash, S., Van Loan, C.: A Hessenberg–Schur method for the problem AX + XB = C. IEEE Trans. Autom. Control 24, 909–913 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, C.-H.: Nonsymmetric algebraic Riccati equations and Wiener–Hopf factorization for M-matrices. SIAM J. Matrix Anal. Appl. 23, 225–242 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, C.-H.: A note on the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation. Linear Algebra Appl. 357, 299–302 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, C.-H.: Efficient methods for solving a nonsymmetric algebraic Riccati equation arising in stochastic fluid models. J. Comput. Appl. Math. 192, 353–373 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guo, C.-H., Higham, N.J.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)

    Article  MathSciNet  Google Scholar 

  15. Guo, C.-H., Iannazzo, B., Meini, B.: On the doubling algorithm for a (shifted) nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 1083–1100 (2007)

    Article  MathSciNet  Google Scholar 

  16. Guo, C.-H., Laub, A.J.: On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 22, 376–391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, X.-X., Bai, Z.-Z.: On the minimal nonnegative solution of nonsymmetric algebraic Riccati equation. J. Comput. Math. 23, 305–320 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Guo, X.-X., Lin, W.-W., Xu, S.-F.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103, 393–412 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  20. Iannazzo, B., Poloni, F.: A subspace shift technique for nonsymmetric algebraic Riccati equations associated with an M-matrix. Numer. Linear Algebra Appl. (2012). doi:10.1002/nla.1836

    MATH  Google Scholar 

  21. Juang, J.: Existence of algebraic matrix Riccati equations arising in transport theory. Linear Algebra Appl. 230, 89–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Juang, J., Lin, W.-W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl. 20, 228–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kelley, C.T.: A Shamanskii-like acceleration scheme for nonlinear equations at singular roots. Math. Comput. 47, 609–623 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Lin, Y., Bao, L.: Convergence analysis of the Newton–Shamanskii method for a nonsymmetric algebraic Riccati equation. Numer. Linear Algebra Appl. 15, 535–546 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rogers, L.C.G.: Fluid models in queueing theory and Wiener–Hopf factorization of Markov chains. Ann. Appl. Probab. 4, 390–413 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sargolzaei, P., Soleymani, F.: Accurate 14th-order methods for solving nonlinear equations. Numer. Algorithms 58, 513–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sharma, J.R., Sharma, R.: A new family of modified Ostrowski’s methods with accelerated eighth order convergence. Numer. Algorithms 54, 445–458 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  29. Wang, W.-G., Wang, W.-C., Li, R.-C.: Alternating-directional doubling algorithm for M-matrix algebraic Riccati equations. SIAM J. Matrix Anal. Appl 33, 170–194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xue, J., Xu, S., Li, R.-C.: Accurate solutions of M-matrix algebraic Riccati equations. Numer. Math. 120, 671–700 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hua Guo.

Additional information

This work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, CH. Monotone convergence of Newton-like methods for M-matrix algebraic Riccati equations. Numer Algor 64, 295–309 (2013). https://doi.org/10.1007/s11075-012-9666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9666-7

Keywords

Mathematics Subject Classifications (2010)

Navigation