Skip to main content
Log in

An experimental study of approximation algorithms for the joint spectral radius

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe several approximation algorithms for the joint spectral radius and compare their performance on a large number of test cases. The joint spectral radius of a set Σ of \(n \times n\) matrices is the maximal asymptotic growth rate that can be obtained by forming products of matrices from Σ. This quantity is NP-hard to compute and appears in many areas, including in system theory, combinatorics and information theory. A dozen algorithms have been proposed this last decade for approximating the joint spectral radius but little is known about their practical efficiency. We overview these approximation algorithms and classify them in three categories: approximation obtained by examining long products, by building a specific matrix norm, and by using optimization-based techniques. All these algorithms are now implemented in a (freely available) MATLAB toolbox that was released in 2011. This toolbox allows us to present a comparison of the approximations obtained on a large number of test cases as well as on sets of matrices taken from the literature. Finally, in our comparison we include a method, available in the toolbox, that combines different existing algorithms and that is the toolbox’s default method. This default method was able to find optimal products for all test cases of dimension less than four.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berger, M.A., Wang, Y.: Bounded semi-groups of matrices. Linear Algebra Appl. 166, 21–27 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. Blondel, V.D., Nesterov, Y.: Computationally efficient approximations of the joint spectral radius. SIAM J. Matrix Anal. Appl. 27(1), 256–272 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. Blondel, V.D., Nesterov, Y., Theys, J.: On the accuracy of the ellipsoid norm approximation of the joint spectral radius. Linear Algebra Appl. 394(1), 91–107 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. Blondel, V.D., Theys, J., Vladimirov, A.A.: An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal. Appl. 24(4), 963–970 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bousch, T., Mairesse, J.: Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. AMS 15(1), 77–111 (2002).

    MathSciNet  MATH  Google Scholar 

  6. Chang, C.T., Blondel, V.D.: Approximating the joint spectral radius using a genetic algorithm framework. In: Proc. 18th IFAC World Congress, Vol. 18, pp. 8681–8686. Milano, Italy (2011)

    Google Scholar 

  7. Cicone, A., Guglielmi, N., Serra-Capizzano, S., Zennaro, M.: Finiteness property of pairs of 2×2 sign-matrices via real extremal polytope norms. Linear Algebra Appl. 432(2–3), 796–816 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. Daubechies, I., Lagarias, J.C.: Two-scale difference equations II. Local regularity, infinite products of matrices and fractals. SIAM J. Math. Anal. 23(4), 1031–1079 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. Gripenberg, G.: Computing the joint spectral radius. Linear Algebra Appl. 234, 43–60 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  10. Guglielmi, N., Zennaro, M.: Balanced complex polytopes and related vector and matrix norms. J. Convex Anal. 14, 729–766 (2007).

    MathSciNet  MATH  Google Scholar 

  11. Guglielmi, N.: Finding extremal complex polytope norms for families of real matrices. SIAM J. Matrix Anal. Appl. 31(2), 602–620 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. Gurvits, L.: Stability of discrete linear inclusion. Linear Algebra Appl. 231, 47–85 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  13. Hare, K.G., Morris, I.D., Sidorov, N., Theys, J.: An explicit counterexample to the Lagarias-Wang finiteness conjecture. Adv. Math. 226(6), 4667–4701 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  14. Jungers, R.M.: The Joint Spectral Radius: Theory and Applications. Springer-Verlag, Berlin, Germany (2009)

    Book  Google Scholar 

  15. Jungers, R.M., Protasov, V.Y., Blondel, V.D.: Overlap-free words and spectra of matrices. Theor. Comp. Sci. 410(38), 3670–3684 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  16. Knuth, D.E.: The Art of Computer Programming, Volume 2, Seminumerical Algorithms. Addison-Wesley, Reading, MA (1997)

    Google Scholar 

  17. Kozyakin, V.S.: Proof of a Counterexample to the Finiteness Conjecture in the Spirit of the Theory of Dynamical Systems. Preprint 1005. Weierstraß-Institut f¨ur Angewandte Analysis und Stochastik, Berlin (2005)

    Google Scholar 

  18. Kozyakin, V.S.: Structure of extremal trajectories of discrete linear systems and the finiteness conjecture. Autom. Remote Control 68(1), 174–209 (2007).

    Article  MATH  Google Scholar 

  19. Kozyakin, V.S.: On accuracy of approximation of the spectral radius by the Gelfand formula. Linear Algebra Appl. 431(11), 2134–2141 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. Kozyakin, V.S.: A relaxation scheme for computation of the joint spectral radius of matrix sets. J. Diff. Equ. Appl. 17(2), 185–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozyakin, V.S.: Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets. Discrete Continuous Dyn. Syst., Ser. B 14(1), 143–158 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  22. Lagarias, J.C., Wang, Y.: The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 214, 17–42 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  23. Maesumi, M.: An efficient lower bound for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 240, 1–7 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  24. Maesumi, M.: Calculating joint spectral radius of matrices and H¨older exponent of wavelets. Approx. Theory IX 2, 1–8 (1998).

    Google Scholar 

  25. Moision, B.E., Orlitsky, A., Siegel, P.H.: On codes that avoid specified differences. IEEE Trans. Inf. Theory 47(1), 433–442 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  26. Parrilo, P.A.: Jadbabaie, A.: Approximation of the joint spectral radius using sum of squares. Linear Algebra Appl 428(10), 2385–2402 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. Protasov, V.Y.: The joint spectral radius and invariant sets of linear operators. Fundam. Prikl. Mat. 2(1), 205–231 (1996).

    MathSciNet  MATH  Google Scholar 

  28. Protasov, V.Y., Jungers, R.M.: Joint spectral characteristics of matrices: a conic programming approach. SIAM J. Matrix. Anal. Appl. 31(4), 2146–2162 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  29. Rota, G.C., Strang, G.: A note on the joint spectral radius. Indag. Math. 22, 379–381 (1960).

    MathSciNet  Google Scholar 

  30. Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability criteria for switched and hybrid systems. SIAM Review 49(4), 545–592 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  31. Tsitsiklis, J.N., Blondel, V.D.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate. Math. Cont. Sign. Syst. 10(1), 31–40 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  32. Vankeerbergen, G., Hendrickx, J., Jungers, R., Chang, C.T., Blondel, V.: The JSR Toolbox. MATLAB®Central. [Software, MATLAB® toolbox]. Files available at http://www.mathworks.com/matlabcentral/fileexchange/33202-the-jsr-toolbox (2011)

  33. Wirth, F.: The generalized spectral radius and extremal norms. Linear Algebra Appl. 342(1), 17–40 (2002).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Tche Chang.

Additional information

This article presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with the authors. Chia-Tche Chang is a F.R.S.-FNRS Research Fellow (Belgian Fund for Scientific Research). A preliminary version of the second section of this article has been presented at the 18th IFAC World Congress, Milano, 2011 [6].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CT., Blondel, V.D. An experimental study of approximation algorithms for the joint spectral radius. Numer Algor 64, 181–202 (2013). https://doi.org/10.1007/s11075-012-9661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9661-z

Keywords

Mathematics Subject Classifications (2010)

Navigation