Skip to main content
Log in

NPTool: a Matlab software for nonnegative image restoration with Newton projection methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Several image restoration applications require the solution of nonnegatively constrained minimization problems whose objective function is typically constituted by the sum of a data fit function and a regularization function. Newton projection methods are very attractive because of their fast convergence, but they need an efficient implementation to avoid time consuming iterations. In this paper we present NPTool, a set of Matlab functions implementing Newton projection methods for image denoising and deblurring applications. They are specifically thought for two different data fit functions, the Least Squares function and the Kullback–Leibler divergence, and two regularization functions, Tikhonov and Total Variation, giving the opportunity of solving a large variety of restoration problems. The package is easily extensible to other linear or nonlinear data fit and regularization functions. Some examples of its use are included in the package and shown in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardsley, J., Luttman, A.: Total variation-penalized Poisson likelihood estimation for ill-posed problems. Adv. Comput. Math. 31, 35–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardsley, J., Nagy, J.: Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging. SIAM J. Matrix Anal. Appl. 27, 1184–1198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18, 2419–2434 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  5. Bertsekas, D.: Projected Newton methods for optimization problem with simple constraints. SIAM J. Control Optim. 20(2), 221–245 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific (1999)

  7. Dai, Y.H., Fletcher, R.: Projected Barzilai-Borwein methods for large-scale box-constrained quadratic programming. Numer. Math. 100, 51–47 (2005)

    Article  MathSciNet  Google Scholar 

  8. Csiszár, I.: Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Stat. 19, 2032–2066 (1991)

    Article  MATH  Google Scholar 

  9. Dobson, D., Santosa, F.: Recovery of blocky images from noisy and blurred data. SIAM J. Appl. Math. 56, 1181–1198 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control. Optim. 22, 936–964 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hansen, P.C.: Rank–Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  12. Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images. Matrices, Spectra and Filtering. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  13. Krishnan, D., Lin, P., Yip, A.M.: A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Trans. Image Process. 16, 2766–2777 (2007)

    Article  MathSciNet  Google Scholar 

  14. Landi, G., Loli Piccolomini, E.: A fast projected quasi-Newton method for nonnegative tikhonov regularization. Int. J. Math. Comput. Sci. 3(3), 199–213 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Landi, G., Loli Piccolomini, E.: A projected Newton-CG method for nonnegative astronomical image deblurring. Numer. Algorithms 48, 279–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Landi, G., Loli Piccolomini, E.: An improved Newton projection method for nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization. Numer. Algorithms 60, 169–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Landi, G., Loli Piccolomini, E.: An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by Poisson noise. Comput. Med. Imaging Graph. 36, 38–46 (2012)

    Article  Google Scholar 

  18. Lucy, L.B.: An iterative technique for the rectification of observed images. Astron. J. 79, 745–754 (1974)

    Article  Google Scholar 

  19. Nagy, J., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a Matlab object-oriented approach. Numer. Algorithms 36, 73–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagy, J., Strakos, Z.: Enforcing nonnegativity in image reconstruction algorithms. Math. Model. Est. Imag. 4121, 182–190 (2000) (Wilson, D.C., et al. eds.)

    Article  Google Scholar 

  21. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  22. Piana, M., Bertero, M.: Projected Landweber method and preconditioning. Inverse Probl. 13, 441–463 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  24. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  25. Vogel, C.R., Oman, M.E.: Fast, robust total variation–based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? IEEE Signal Process. Mag. 98, 98–117 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Loli Piccolomini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, G., Piccolomini, E.L. NPTool: a Matlab software for nonnegative image restoration with Newton projection methods. Numer Algor 62, 487–504 (2013). https://doi.org/10.1007/s11075-012-9602-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9602-x

Keywords

Navigation