Skip to main content
Log in

On computing quadrature-based bounds for the A-norm of the error in conjugate gradients

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

An Erratum to this article was published on 28 May 2014

Abstract

In their original paper, Golub and Meurant (BIT 37:687–705, 1997) suggest to compute bounds for the A-norm of the error in the conjugate gradient (CG) method using Gauss, Gauss-Radau and Gauss-Lobatto quadratures. The quadratures are computed using the (1,1)-entry of the inverse of the corresponding Jacobi matrix (or its rank-one or rank-two modifications). The resulting algorithm called CGQL computes explicitly the entries of the Jacobi matrix and its modifications from the CG coefficients. In this paper, we use the fact that CG computes the Cholesky decomposition of the Jacobi matrix which is given implicitly. For Gauss-Radau and Gauss-Lobatto quadratures, instead of computing the entries of the modified Jacobi matrices, we directly compute the entries of the Cholesky decompositions of the (modified) Jacobi matrices. This leads to simpler formulas in comparison to those used in CGQL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arioli, M.: A stopping criterion for the conjugate gradient algorithms in a finite element method framework. Numer. Math. 97, 1–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auchmuty, G.: A posteriori error estimates for linear equations. Numer. Math. 61, 1–6 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezinski, C.: Error estimates for the solution of linear systems. SIAM J. Sci. Comput. 21, 764–781 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Computable error bounds and estimates for the conjugate gradient method. Numer. Algor. 25, 75–88 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: An iterative method with error estimators. J. Comput. Appl. Math. 127, 93–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlquist, G., Eisenstat, S.C., Golub, G.H.: Bounds for the error of linear systems of equations using the theory of moments. J. Math. Anal. Appl. 37, 151–166 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlquist, G., Golub, G.H., Nash, S.G.: Bounds for the error in linear systems. In: Semi-infinite Programming (Proc. Workshop, Bad Honnef, 1978). Lecture Notes in Control and Information Sci., vol. 15, pp. 154–172. Springer, Berlin (1979)

    Chapter  Google Scholar 

  8. Fischer, B., Golub, G.H.: On the error computation for polynomial based iteration methods. In: Recent Advances in Iterative Methods. IMA Vol. Math. Appl., vol. 60, pp. 59–67. Springer, New York (1994)

    Chapter  Google Scholar 

  9. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, UK (2004)

    MATH  Google Scholar 

  10. Golub, G.H.: Some modified matrix eigenvalue problems. SIAM Rev. 15, 318–334 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Numerical Analysis 1993 (Dundee, 1993). Pitman Res. Notes Math. Ser., Longman Sci. Tech., vol. 303, pp. 105–156. Harlow (1994)

  12. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods. BIT 37, 687–705 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, USA (2010)

    MATH  Google Scholar 

  14. Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algor. 8, 241–268 (1994)

    Article  MATH  Google Scholar 

  15. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    Google Scholar 

  16. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comp. 23, 221–230 (1969) (addendum, ibid., 23, A1–A10 (1969))

  17. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Research Nat. Bur. Standards 49, 409–436 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32, 1567–1590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Research Nat. Bur. Standards 49, 33–53 (1952)

    Article  MathSciNet  Google Scholar 

  20. Laurie, D.P.: Anti-Gaussian quadrature formulas. Math. Comp. 65, 739–747 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Meurant, G.: The computation of bounds for the norm of the error in the conjugate gradient algorithm. Numer. Algor. 16, 77–87 (1998)

    Article  MathSciNet  Google Scholar 

  22. Meurant, G.: Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm. Numer. Algor. 22, 353–365 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meurant, G.: The Lanczos and Conjugate Gradient Algorithms, from Theory to Finite Precision Computations. Software, Environments, and Tools, vol. 19. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2006)

  24. Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15, 471–542 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Parlett, B.N.: The new qd algorithms. Acta Numer. 15, 459–491 (1995)

    Article  MathSciNet  Google Scholar 

  26. Parlett, B.N., Dhillon, I.S.: Relatively robust representations of symmetric tridiagonals. In: Proceedings of the International Workshop on Accurate Solution of Eigenvalue Problems (University Park, PA, 1998), vol. 309, pp. 121–151 (2000)

  27. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, Berlin, Germany (1983)

    Google Scholar 

  28. Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13, 56–80 (2002)

    MathSciNet  MATH  Google Scholar 

  29. Strakoš, Z., Tichý, P.: Error estimation in preconditioned conjugate gradients. BIT 45, 789–817 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wilf, H.S.: Mathematics for the Physical Sciences. Wiley, New York, USA (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Tichý.

Additional information

This work was supported by the project No. IAA100300802 of the Grant Agency of the Academy of Sciences of the Czech Republic. It was finalized in 2011 during a visit of G. Meurant to the Institute of Computer Science of the Academy of Sciences of the Czech Republic.

An erratum to this article is available at http://dx.doi.org/10.1007/s11075-014-9868-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meurant, G., Tichý, P. On computing quadrature-based bounds for the A-norm of the error in conjugate gradients. Numer Algor 62, 163–191 (2013). https://doi.org/10.1007/s11075-012-9591-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9591-9

Keywords

Mathematics Subject Classification (2010)

Navigation