Skip to main content
Log in

High order explicit Runge–Kutta Nyström pairs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Explicit Runge–Kutta Nyström pairs provide an efficient way to find numerical solutions to second-order initial value problems when the derivative is cheap to evaluate. We present new optimal pairs of orders ten and twelve from existing families of pairs that are intended for accurate integrations in double precision arithmetic. We also present a summary of numerical comparisons between the new pairs on a set of eight problems which includes realistic models of the Solar System. Our searching for new order twelve pairs shows that there is often not quantitative agreement between the size of the principal error coefficients and the efficiency of the pairs for the tolerances we are interested in. Our numerical comparisons, as well as establishing the efficiency of the new pairs, show that the order ten pairs are more efficient than the order twelve pairs on some problems, even at limiting precision in double precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dormand, J.R., El-Mikkaway, M.E.A., Prince, P.J.: High-order embedded Runge–Kutta–Nyström formuale. IMA J. Numer. Anal. 7, 423–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. El-Mikkawy, M.E.A.: Embedded Runge–Kutta–Nyström Methods. Phd thesis, CNAA (1986)

  3. Enright, W.H., Pryce, J.D.: Two FORTRAN packages for assessing initial value methods. ACM Trans. Math. Softw. 13(1), 1–27 (1987). doi:10.1145/23002.27645

    Article  MATH  Google Scholar 

  4. Filippi, S., Gräf, J.: New Runge-Kutta-Nyström formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for differential equations of the form y′′ = f(x,y). J. Comput. Appl. Math. 14(3), 361–370 (1986). doi:10.1016/0377-0427(86)90073-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Grazier, K.R., Newman, W.I., Kaula, W.M., Hyman, J.M.: Dynamical evolution of planetesimals in the outer solar system. I. The Jupiter/Saturn zone. Icarus 140, 341–352 (1999). doi:10.1006/icar.1999.6146

    Article  Google Scholar 

  6. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I: Nonstiff Problems. Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  7. Holman, M.J.: A possible long-lived belt of objects between Uranus and Neptune. Nature 387, 785–788 (1997)

    Article  Google Scholar 

  8. Horn, M.K.: Developments in High-order Runge–Kutta–Nyström Formulas. ProQuest LLC, Ann Arbor, MI. Thesis (PhD), The University of Texas at Austin (1977)

  9. Ito, T., Tanikawa, K.: Long-term integrations and stability of planetary orbits in our Solar system. Mon. Not. R. Astron. Soc. 336, 483–500 (2002). doi:10.1046/j.1365-8711.2002.05765.x

    Article  Google Scholar 

  10. Kahan, W.: Further remarks on reducing truncation error. Commun. ACM 8, 40 (1965)

    Article  Google Scholar 

  11. Papakostas, S.N., Tsitouras, C.: High phase-lag-order Runge–Kutta and Nyström pairs. SIAM J. Sci. Comput. 21(2), 747–763 (electronic) (1999). doi:10.1137/S1064827597315509

    Article  MathSciNet  MATH  Google Scholar 

  12. Prince, P.J., Dormand, J.R.: High order embedded Runge–Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981). doi:10.1016/0771-050X(81)90010-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Sharp, P.W.: Numerical comparisons of some explicit Runge–Kutta pair of orders 3 through 8. ACM Trans. Math. Softw. 17(3), 387–409 (1991). doi:10.1145/114697.116811

    Article  MATH  Google Scholar 

  14. Sharp, P.W.: N-body simulations: the performance of some integrators. ACM Trans. Math. Softw. 32, 375–395 (2006). doi:10.1145/1163641.1163642

    Article  MathSciNet  MATH  Google Scholar 

  15. Sinclair, A.T., Taylor, D.B.: Analysis of the orbits of Titan, Hyperion, and Iapetus by numerical integration and by analytical theories. Astron. Astrophys. 147, 241–246 (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Sharp.

Additional information

The work of the second author was supported by the Higher Education Commission of Pakistan.

The work of the third author has been conducted in part at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Government sponsorship acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, P.W., Qureshi, M.A. & Grazier, K.R. High order explicit Runge–Kutta Nyström pairs. Numer Algor 62, 133–148 (2013). https://doi.org/10.1007/s11075-012-9571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9571-0

Keywords

Navigation