Skip to main content
Log in

Extrapolation algorithm for affine-convex feasibility problems

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

The convex feasibility problem under consideration is to find a common point of a countable family of closed affine subspaces and convex sets in a Hilbert space. To solve such problems, we propose a general parallel block-iterative algorithmic framework in which the affine subspaces are exploited to introduce extrapolated over-relaxations. This framework encompasses a wide range of projection, subgradient projection, proximal, and fixed point methods encountered in various branches of applied mathematics. The asymptotic behavior of the method is investigated and numerical experiments are provided to illustrate the benefits of the extrapolations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Auslender, Méthodes Numériques pour la Résolution des Problèmes d’Optimisation avec Contraintes, Thèse, Faculté des Sciences, Grenoble, France (1969).

  2. H.H. Bauschke, Projection algorithms and monotone operators, PhD Thesis, Department of Mathematics, Simon Fraser University, Burnaby, British Columbia, Canada (August 1996). Available at http://www.cecm.sfu.ca/preprints/1996pp.html.

  3. H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996) 367–426.

    Article  MATH  MathSciNet  Google Scholar 

  4. H.H. Bauschke and P.L. Combettes, A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001) 248–264.

    Article  MATH  MathSciNet  Google Scholar 

  5. H.H. Bauschke, F. Deutsch, H. Hundal and S.-H. Park, Fejér monotonicity and weak convergence of an accelerated method of projections, in: Constructive, Experimental, and Nonlinear Analysis, ed. M. Théra (CMS Conference Proceedings 27, 2000) pp. 1–6.

  6. H.H. Bauschke, F. Deutsch, H. Hundal, and S.-H. Park, Accelerating the convergence of the method of alternating projections, Trans. Am. Math. Soc. 355 (2003) 3433–3461.

    Article  MATH  MathSciNet  Google Scholar 

  7. H.H. Bauschke and S.G. Kruk, Reflection-projection method for convex feasibility problems with an obtuse cone, J. Optim. Theory Appl. 120 (2004) 503–531.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud. 63 (1994) 123–145.

    MATH  MathSciNet  Google Scholar 

  9. L.M. Bregman, The method of successive projection for finding a common point of convex sets, Sov. Math., Dokl. 6 (1965) 688–692.

    MATH  Google Scholar 

  10. F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967) 201–225.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Butnariu and Y. Censor, On the behavior of a block-iterative projection method for solving convex feasibility problems, Int. J. Comput. Math. 34 (1990) 79–94.

    Article  Google Scholar 

  12. D. Butnariu, Y. Censor and S. Reich, eds., Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Elsevier, New York, 2001).

    MATH  Google Scholar 

  13. A. Cauchy, Méthode générale pour la résolution des systèmes d’équations simultanées, C. R. Acad. Sci. Paris 25 (1847) 536–538.

    Google Scholar 

  14. Y. Censor, Iterative methods for the convex feasibility problem, Ann. Discrete Math. 20 (1984) 83–91.

    MathSciNet  Google Scholar 

  15. Y. Censor and A. Lent, Cyclic subgradient projections, Math. Program. 24 (1982) 233–235.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Censor and S.A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications (Oxford University Press, New York, 1997).

    MATH  Google Scholar 

  17. G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, La Ricerca Scientifica (Roma) 1 (1938) 326–333.

    Google Scholar 

  18. P.L. Combettes, The foundations of set theoretic estimation, Proc. IEEE 81 (1993) 182–208.

    Article  Google Scholar 

  19. P.L. Combettes, Construction d’un point fixe commun à une famille de contractions fermes, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 1385–1390.

    MATH  MathSciNet  Google Scholar 

  20. P.L. Combettes, The convex feasibility problem in image recovery, in: Advances in Imaging and Electron Physics, ed. P. Hawkes, Vol. 95, (Academic, New York, 1996) pp. 155–270.

    Google Scholar 

  21. P.L. Combettes, Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections, IEEE Trans. Image Process. 6 (1997) 493–506.

    Article  Google Scholar 

  22. P.L. Combettes, Hilbertian convex feasibility problem: Convergence of projection methods, Appl. Math. Optim. 35 (1997) 311–330.

    Article  MATH  MathSciNet  Google Scholar 

  23. P.L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, in: Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, eds. D. Butnariu, Y. Censor and S. Reich (Elsevier, New York, 2001) pp. 115–152.

    Google Scholar 

  24. P.L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization 53 (2004) 475–504.

    Article  MATH  MathSciNet  Google Scholar 

  25. P.L. Combettes and S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117–136.

    MATH  MathSciNet  Google Scholar 

  26. G. Crombez, Image recovery by convex combinations of projections, J. Math. Anal. Appl. 155 (1991) 413–419.

    Article  MATH  MathSciNet  Google Scholar 

  27. G. Crombez, Viewing parallel projection methods as sequential ones in convex feasibility problems, Trans. Am. Math. Soc. 347 (1995) 2575–2583.

    Article  MATH  MathSciNet  Google Scholar 

  28. A.R. De Pierro and A.N. Iusem, A parallel projection method for finding a common point of a family of convex sets, Pesqui. Oper. 5 (1985) 1–20.

    Google Scholar 

  29. F. Deutsch, The method of alternating orthogonal projections, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer, The Netherlands, 1992) pp. 105–121.

    Google Scholar 

  30. F. Deutsch, Best Approximation in Inner Product Spaces (Springer, Berlin Heidelberg New York, 2001).

    MATH  Google Scholar 

  31. L.T. Dos Santos, A parallel subgradient projections method for the convex feasibility problem, J. Comput. Appl. Math. 18 (1987) 307–320.

    Article  MATH  MathSciNet  Google Scholar 

  32. I.I. Eremin, Generalization of the relaxation method of Motzkin–Agmon, Uspekhi Mat. Nauk 20 (1965) 183–187.

    MATH  MathSciNet  Google Scholar 

  33. S.D. Flåm and J. Zowe, Relaxed outer projections, weighted averages, and convex feasibility, BIT 30 (1990) 289–300.

    Article  MATH  MathSciNet  Google Scholar 

  34. U. García-Palomares, Parallel-projected aggregation methods for solving the convex feasibility problem, SIAM J. Optim. 3 (1993) 882–900.

    Article  MATH  MathSciNet  Google Scholar 

  35. U.M. García-Palomares and F.J. González-Castaño, Incomplete projection algorithms for solving the convex feasibility problem, Numer. Algorithms 18 (1998) 177–193.

    Article  MATH  MathSciNet  Google Scholar 

  36. K. Goebel, and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (Marcel Dekker, New York, 1984).

    MATH  Google Scholar 

  37. K. Goebel, and W.A. Kirk, Topics in Metric Fixed Point Theory (Cambridge University Press, Cambridge, 1990).

    MATH  Google Scholar 

  38. F.J. González-Castaño, U.M. García-Palomares, J.L. Alba-Castro and J.M. Pousada-Carballo, Fast image recovery using dynamic load balancing in parallel architectures, by means of incomplete projections, IEEE Trans. Image Process. 10 (2001) 493–499.

    Article  MATH  Google Scholar 

  39. A. Göpfert, H. Riahi, C. Tammer and C. Zaălinescu, Variational Methods in Partially Ordered Spaces (Springer, Berlin Heidelberg New York, 2003).

    MATH  Google Scholar 

  40. L.G. Gubin, B.T. Polyak and E.V. Raik, The method of projections for finding the common point of convex sets, USSR Comput. Math. Math. Phys. 7 (1967) 1–24.

    Article  Google Scholar 

  41. S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Acad. Sci. Pologne A35 (1937) 355–357.

    Google Scholar 

  42. K.C. Kiwiel, Block-iterative surrogate projection methods for convex feasibility problems, Linear Algebra Appl. 215 (1995) 225–259.

    Article  MATH  MathSciNet  Google Scholar 

  43. K.C. Kiwiel and B. opuch, Surrogate projection methods for finding fixed points of firmly nonexpansive mappings, SIAM J. Optim. 7 (1997) 1084–1102.

    Article  MATH  MathSciNet  Google Scholar 

  44. N. Lehdili and B. Lemaire, The barycentric proximal method, Comm. Appl. Nonlinear Anal. 6 (1999) 29–47.

    MATH  MathSciNet  Google Scholar 

  45. Y.I. Merzlyakov, On a relaxation method of solving systems of linear inequalities, USSR Comput. Math. Math. Phys. 2 (1963) 504–510.

    Article  Google Scholar 

  46. W. Oettli, A remark on vector-valued equilibria and generalized monotonicity, Acta Math. Vietnam. 22 (1997) 215–221.

    MathSciNet  Google Scholar 

  47. N. Ottavy, Strong convergence of projection-like methods in Hilbert spaces, J. Optim. Theory Appl. 56 (1988) 433–461.

    Article  MATH  MathSciNet  Google Scholar 

  48. G. Pierra, Éclatement de contraintes en parallèle pour la minimisation d’une forme quadratique, in: Lecture Notes in Computer Science, Vol. 41, (Springer, Berlin Heidelberg New York, 1976) pp. 200–218.

  49. G. Pierra, Decomposition through formalization in a product space, Math. Programming 28 (1984) 96–115.

    Article  MATH  MathSciNet  Google Scholar 

  50. B.T. Polyak, Minimization of unsmooth functionals, USSR Comput. Math. Math. Phys. 9 (1969) 14–29.

    Article  Google Scholar 

  51. S. Reich, A limit theorem for projections, Linear Multilinear Algebra 13 (1983) 281–290.

    Article  MATH  Google Scholar 

  52. R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.

    Article  MATH  MathSciNet  Google Scholar 

  53. P. Tseng, On the convergence of products of firmly nonexpansive mappings, SIAM J. Optim. 2 (1992) 425–434.

    Article  MATH  MathSciNet  Google Scholar 

  54. I. Yamada, K. Slavakis and K. Yamada, An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques, IEEE Trans. Signal Process. 50 (2002) 1091–1101.

    Article  Google Scholar 

  55. I. Yamada and N. Ogura, Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions, Numer. Funct. Anal. Optim. 25 (2004) 593–617.

    Article  MATH  MathSciNet  Google Scholar 

  56. E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B – Nonlinear Monotone Operators (Springer, Berlin Heidelberg New York, 1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz H. Bauschke.

Additional information

Communicated by Claude Brezinski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauschke, H.H., Combettes, P.L. & Kruk, S.G. Extrapolation algorithm for affine-convex feasibility problems. Numer Algor 41, 239–274 (2006). https://doi.org/10.1007/s11075-005-9010-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-005-9010-6

Keywords

AMS subject classification

Navigation