Skip to main content
Log in

On libration suppression of partial space elevator with a moving climber

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper develops a high-fidelity and high-accuracy dynamic model to investigate libration suppression of partial space elevator caused by a moving climber through tether deployment and/or retrieval at main and subsatellites. The model is based on the nodal position finite element method in the arbitrary Lagrangian–Eulerian description. In this approach, moving nodes are assigned to the climber and satellites and variable-length elements are used to represent the movement of climber and tether deployment and/or retrieval. In conjunction with the moving nodes, a merging and dividing element scheme is derived to describe the climber moving across the boundary of tether elements. The results show that the deployment of tether at the subsatellites produce a positive effect to suppress the libration motion of partial space elevator, while the retrieval of tether produce a negative effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Woo, P., Misra, A.K.: Energy considerations in the partial space elevator. Acta Astronaut. 99, 78–84 (2014)

    Article  Google Scholar 

  2. Woo, P., Misra, A.K.: Dynamics of a partial space elevator with multiple climbers. Acta Astronaut. 67(7), 753–763 (2010)

    Article  Google Scholar 

  3. Lorenzini, E.C.: A three-mass tethered system for micro-g/variable-g applications. J. Guid., Control, Dyn. 10(3), 242–249 (1987)

    Article  Google Scholar 

  4. Lorenzini, E.C., Cosmo, M., Vetrella, S., Moccia, A.: Dynamics and control of the tether elevator/crawler system. J. Guid., Control, Dyn. 12(3), 404–411 (1989)

    Article  Google Scholar 

  5. Cohen, S.S., Misra, A.K.: The effect of climber transit on the space elevator dynamics. Acta Astronaut. 64(5), 538–553 (2009)

    Article  Google Scholar 

  6. Shi, G., Zhu, Z., Zhu, Z.H.: Libration suppression of tethered space system with a moving climber in circular orbit. Nonlinear Dyn. 91(2), 923–937 (2018)

    Article  Google Scholar 

  7. Jung, W., Mazzoleni, A.P., Chung, J.: Dynamic analysis of a tethered satellite system with a moving mass. Nonlinear Dyn. 75(1), 267–281 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cohen, S.S., Misra, A.K.: Elastic oscillations of the space elevator ribbon. J. Guid., Control, Dyn. 30(6), 1711–1717 (2007)

    Article  Google Scholar 

  9. Sun, X., Xu, M., Zhong, R.: Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation. Acta Astronaut. 139, 266–277 (2017)

    Article  Google Scholar 

  10. Williams, P.: Dynamic multibody modeling for tethered space elevators. Acta Astronaut. 65(3), 399–422 (2009)

    Article  Google Scholar 

  11. Ishikawa, Y., Otsuka, K., Yamagiwa, Y., Doi, H.: Effects of ascending and descending climbers on space elevator cable dynamics. Acta Astronaut. 145, 165–173 (2018)

    Article  Google Scholar 

  12. Shi, G., Zhu, Z., Zhu, Z.H.: Stable orbital transfer of partial space elevator by tether deployment and retrieval. Acta Astronaut. 152, 624–629 (2018)

    Article  Google Scholar 

  13. Misra, A.K., Amier, Z., Modi, V.J.: Attitude dynamics of three-body tethered systems. Acta Astronaut. 17(10), 1059–1068 (1988)

    Article  MATH  Google Scholar 

  14. Jung, W., Mazzoleni, A.P., Chung, J.: Nonlinear dynamic analysis of a three-body tethered satellite system with deployment/retrieval. Nonlinear Dyn. 82(3), 1127–1144 (2015)

    Article  MathSciNet  Google Scholar 

  15. Sun, G., Zhu, Z.H.: Fractional order tension control for stable and fast tethered satellite retrieval. Acta Astronaut. 104(1), 304–312 (2014)

    Article  Google Scholar 

  16. Sun, G., Zhu, Z.: Fractional-order tension control law for deployment of space tether system. J. Guid., Control, Dyn. 37(6), 2057–2062 (2014)

    Article  Google Scholar 

  17. Wen, H., Jin, D., Hu, H.: Three-dimensional optimal deployment of a tethered subsatellite with an elastic tether. Int. J. Comput. Math. 85(6), 915–923 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu, B., Jin, D.: Deployment and retrieval of tethered satellite system under \(\text{ J }_{{2}}\) perturbation and heating effect. Acta Astronaut. 67(7), 845–853 (2010)

    Article  Google Scholar 

  19. Williams, P.: Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn. 52(1–2), 159–179 (2008)

    Article  MATH  Google Scholar 

  20. Banerjee, A.K.: Order-n formulation of extrusion of a beam with large bending and rotation. J. Guid., Control, Dyn. 15(1), 121–127 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhong, R., Zhu, Z.: Dynamic analysis of deployment and retrieval of tethered satellites using a hybrid hinged-Rod tether model. Int. J. Aerosp. Lightweight Struct. 1(2), 239–259 (2011)

    Article  Google Scholar 

  22. Krupa, M., Poth, W., Schagerl, M., Steindl, A., Steiner, W., Troger, H., Wiedermann, G.: Modelling, dynamics and control of tethered satellite systems. Nonlinear Dyn. 43(1–2), 73–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meng, Z., Huang, P.: Universal dynamic model of the tethered space robot. J. Aerosp. Eng. 29(1), 04015026 (2016)

    Article  Google Scholar 

  24. Barkow, B., Steindl, A., Troger, H., Wiedermann, G.: Various methods of controlling the deployment of a tethered satellite. Modal Anal. 9(1–2), 187–208 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Mankala, K.K., Agrawal, S.K.: Dynamic modeling and simulation of satellite tethered systems. J. Vib. Acoust. 127(2), 144–156 (2004)

    Article  Google Scholar 

  26. McIver, D.B.: Hamilton’s principle for systems of changing mass. J. Eng. Math. 7(3), 249–261 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tang, J., Ren, G., Zhu, W., Ren, H.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3411–3424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, E., Vadali, S.R.: Modeling issues related to retrieval of flexible tethered satellite systems. J. Guid., Control, Dyn. 18(5), 1169–1176 (1995)

    Article  Google Scholar 

  29. Du, J., Bao, H., Cui, C., Yang, D.: Dynamic analysis of cable-driven parallel manipulators with time-varying cable lengths. Finite Elements Anal. Des. 48(1), 1392–1399 (2012)

    Article  MathSciNet  Google Scholar 

  30. Schwarzbart, M., Steindl, A., Steiner, W., Troger, H., Wiedermann, G.: Tethered satellite systems: a challenge for mechanics and applied mathematics. GAMM-Mitt. 32(1), 105–120 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kawaguti, K., Terumichi, Y., Takehara, S., Kaczmarczyk, S., Sogabe, K.: The study of the tether motion with time-varying length using the absolute nodal coordinate formulation with multiple nonlinear time scales. J. Syst. Des. Dyn. 1(3), 491–500 (2007)

    Google Scholar 

  32. Du, J., Cui, C., Bao, H., Qiu, Y.: Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. J. Comput. Nonlinear Dyn. 10(1), 011013 (2014)

    Article  Google Scholar 

  33. Escalona, J.L.: An arbitrary Lagrangian–Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mech. Mach. Theory 112((Supplement C)), 1–21 (2017)

    Article  Google Scholar 

  34. Peng, Y., Wei, Y., Zhou, M.: Efficient modeling of cable-pulley system with friction based on arbitrary-Lagrangian–Eulerian approach. Appl. Math. Mech. 38(12), 1785–1802 (2017)

    Article  MathSciNet  Google Scholar 

  35. Yang, S., Deng, Z., Sun, J., Zhao, Y., Jiang, S.: A variable-length beam element incorporating the effect of spinning. Lat. Am. J. Solids Struct. 14(8), 1506–1528 (2017)

    Article  Google Scholar 

  36. Liu, J.-P., Cheng, Z.-B., Ren, G.-X.: An arbitrary Lagrangian–Eulerian formulation of a geometrically exact Timoshenko beam running through a tube. Acta Mech. 229(8), 3161–3188 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, Z.H.: Dynamic modeling of cable system using a new nodal position finite element method. Int. J. Numer. Methods Biomed. Eng. 26(6), 692–704 (2010)

    MATH  Google Scholar 

  38. Li, G., Zhu, Z.H., Meguid, S.A.: Libration and transverse dynamic stability control of flexible bare electrodynamic tether systems in satellite deorbit. Aerosp. Sci. Technol. 49(February), 112–129 (2016)

    Article  Google Scholar 

  39. Li, G., Zhu, Z.H., Cain, J., Newland, F., Czekanski, A.: Libration control of bare electrodynamic tethers considering elastic-thermal-electrical coupling. J. Guid., Control, Dyn. 39(3), 642–654 (2015)

    Article  Google Scholar 

  40. Sun, F.J., Zhu, Z.H., LaRosa, M.: Dynamic modeling of cable towed body using nodal position finite element method. Ocean Eng. 38(4), 529–540 (2011)

    Article  Google Scholar 

  41. Li, G., Zhu, Z.H., Ruel, S., Meguid, S.A.: Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers. Acta Astronaut. 137(August), 320–333 (2017)

    Article  Google Scholar 

  42. Shi, G., Li, G., Zhu, Z., Zhu, Z.H.: A virtual experiment for partial space elevator using a novel high-fidelity FE model. Nonlinear Dyn. 95(4), 2717–2727 (2019)

    Article  Google Scholar 

  43. Li, G., Shi, G., Zhu, Z.H.: Three-dimensional high-fidelity dynamic modeling of tether transportation system with multiple climbers. J. Guid., Control, Dyn. 1–15 (2019)

  44. Li, G.Q., Zhu, Z.H.: Long-term dynamic modeling of tethered spacecraft using nodal position finite element method and symplectic integration. Celest. Mech. Dyn. Astron. 123(4), 363–386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Li G., Zhu Z.H.: High-fidelity dynamic modelling of partial space elevator with deployment or retrieval of tether, paper no. AAS 19-363. In: 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali (2019)

  46. Kojima, H., Sugimoto, Y., Furukawa, Y.: Experimental study on dynamics and control of tethered satellite systems with climber. Acta Astronaut. 69(1), 96–108 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Discovery Grant and Discovery Accelerate Supplement Grant of Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng H. Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhu, Z.H. On libration suppression of partial space elevator with a moving climber. Nonlinear Dyn 97, 2107–2125 (2019). https://doi.org/10.1007/s11071-019-05108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05108-0

Keywords

Navigation