Skip to main content
Log in

One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main concern of the present article is to study the fifth-order variable-coefficient Sawada–Kotera (VcSK) equation which describes the motion of long waves in shallow water under the gravity. A single- and double-soliton rational solutions for this model are formally retrieved through the generalized unified method. For a single-soliton wave, the velocity, the amplitude and the shape of the wave cannot be affected by variable coefficients. There is an inelastic collision (the collision that makes change in amplitude of the soliton waves and shifts in their trajectories) between the double-soliton waves due to the time-varying field in a graded-index waveguide. It hoped that the established solutions can be used to enrich the dynamic behaviors of the VcSK equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zuo, D.W., Jia, H.X.: Multi-soliton solutions of the generalized variable-coefficient Bogoyavlenskii equation. Wave Random Complex (2018). https://doi.org/10.1080/17455030.2018.1448486

    Google Scholar 

  2. Osman, M.S.: Multi-soliton rational solutions for quantum Zakharov–Kuznetsov equation in quantum magnetoplasmas. Wave Random Complex 26(4), 434–443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Osman, M.S.: On multi-soliton solutions for the (2+ 1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide. Comput. Math. Appl. 75(1), 1–6 (2018)

    Article  MathSciNet  Google Scholar 

  4. Liu, N., Wen, X.Y., Xu, L.: Dynamics of bright and dark multi-soliton solutions for two higher-order Toda lattice equations for nonlinear waves. Adv. Differ. Equ. 2018(1), 289 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kang, Z.Z., Xia, T.C., Ma, X.: Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach. Chin. Phys. Lett. 35(7), 070201 (2018)

    Article  Google Scholar 

  6. Na, L., Xi-Qiang, L.: Application of the binary Bell polynomials method to the dissipative (2+ 1)-dimensional AKNS equation. Chin. Phys. Lett. 29(12), 120201 (2012)

    Article  Google Scholar 

  7. Qin, B., Tian, B., Wang, Y.F., Shen, Y.J., Wang, M.: Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation. Z. Angew. Math. Phys. 68(5), 111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  9. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  MATH  Google Scholar 

  10. Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh–coth method. Appl. Math. Comput. 190(1), 633–640 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Wajahat, H., Riaz, A., Hassan, M.: Darboux transformation for a semidiscrete short-pulse equation. Theor. Math. Phys. 194(3), 360–376 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wazwaz, A.M., Osman, M.S.: Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium. Comput. Math. Appl. 76(2), 276–283 (2018)

    Article  MathSciNet  Google Scholar 

  13. Osman, M.S., Machado, J.A.T.: The dynamical behavior of mixed-type soliton solutions described by (2+ 1)-dimensional Bogoyavlensky–Konopelchenko equation with variable coefficients. J. Electromagn. Waves 32(11), 1457–1464 (2018)

    Article  Google Scholar 

  14. Osman, M.S., Machado, J.A.T.: New nonautonomous combined multi-wave solutions for (2+ 1)-dimensional variable coefficients KdV equation. Nonlinear Dyn. 93(2), 733–740 (2018)

    Article  MATH  Google Scholar 

  15. Osman, M.S.: Multi-soliton rational solutions for some nonlinear evolution equations. Open Phys. 14(1), 26–36 (2016)

    Article  Google Scholar 

  16. Wazwaz, A.M.: Gaussian solitary waves for the logarithmic Boussinesq equation and the logarithmic regularized Boussinesq equation. Ocean Eng. 94, 111–115 (2015)

    Article  Google Scholar 

  17. Yang, J.W., Gao, Y.T., Su, C.Q., Zuo, D.W., Feng, Y.J.: Solitons and quasi-periodic behaviors in an inhomogeneous optical fiber. Commun. Nonlinear Sci. Numer. Simul. 42, 477–490 (2017)

    Article  MathSciNet  Google Scholar 

  18. Li, B.Q., Ma, Y.L., Mo, L.P., Fu, Y.Y.: The \(N\)-loop soliton solutions for (2+1)-dimensional Vakhnenko equation. Comput. Math. Appl. 74, 504–512 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kavitha, L., Parasuraman, E., Gopi, D., Bhuvaneswari, S.: Propagation of electromagnetic solitons in an antiferromagnetic spinladder medium. J. Electromagn. Waves 30, 740–766 (2016)

    Article  Google Scholar 

  20. Osman, M.S.: Analytical study of rational and double-soliton rational solutions governed by the KdV–Sawada–Kotera–Ramani equation with variable coefficients. Nonlinear Dyn. 89(3), 2283–2289 (2017)

    Article  MathSciNet  Google Scholar 

  21. Abdel-Gawad, H.I., Tantawy, M.: Rogue waves in multiple-solitons-inelastic collisions—the complex Sharma–Tasso–Olver equation. Mod. Phys. Lett. B 32(08), 1750360 (2018)

    Article  MathSciNet  Google Scholar 

  22. Liu, C., Dai, Z.: Exact soliton solutions for the fifth-order Sawada–Kotera equation. Appl. Math. Comput. 206(1), 272–275 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Naher, H., Abdullah, F.A., Mohyud-Din, S.T.: Extended generalized Riccati equation mapping method for the fifth-order Sawada–Kotera equation. AIP Adv. 3(5), 052104 (2013)

    Article  Google Scholar 

  24. Naher, H., Abdullah, F.A., Akbar, M.A., Mohyud-Din, S.T.: Some new solutions of the higher-order Sawada–Kotera equation via the exp-function method. Middle East J. Sci. Res. 11(12), 1659–1667 (2012)

    Google Scholar 

  25. Shah, N.A., Animasaun, I.L., Ibraheem, R.O., Babatunde, H.A., Sandeep, N., Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surface. J. Mol. Liq. 249, 980–990 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Osman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, M.S. One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dyn 96, 1491–1496 (2019). https://doi.org/10.1007/s11071-019-04866-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04866-1

Keywords

Mathematics Subject Classification

Navigation