Skip to main content
Log in

Mode change in the dynamics of exploited limited population with age structure

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study focuses on the dynamics of exploited limited population with age structure and compares dynamic modes of population models with and without exploitation while considering age-specific harvesting. Transcritical, period-doubling, and Neimark–Sacker bifurcations occur in the population models. In the case of juvenile harvest, the way of stability loss does not depend on the harvest rate. However, in the case of adult harvest, the hydra effect occurs, which is an increase in harvest rate that subsequently increases the stationary size of the young group. As a rule, harvesting leads to dynamics stabilization. However, the models reveal multistability. Hence, in the case of exploitation, different dynamic modes can occur with their attraction basins at the same population parameter values. Irregular harvesting or a changing harvest rate may also result in fluctuations in exploited population size because the current population size can shift from one attraction basin to another. Controlling exploited population dynamics is sufficient to shift and retain the population number to within the attraction basin of the dynamic mode selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Meisner, V.I.: Regulatory methods of fisheries and principles of rational fishery. Rybnoe khoziaistvo 4, 3–28 (1923). (in Russ.)

    Google Scholar 

  2. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11(5), 559–623 (1954)

    Article  Google Scholar 

  3. Beddington, J.R., Taylor, D.B.: 356. Note: Optimum age specific harvesting of a population. Biometrics 29(4), 801–809 (1973)

    Article  Google Scholar 

  4. Beverton, R.J., Holt, S.J.: On the Dynamics of Exploited Fish Populations, vol. 11. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  5. Caughley, G.: Analysis of Vertebrate Populations. John Wiley and Sons, Hoboken (1977)

    Google Scholar 

  6. Berryman, A.A.: Principles of Population Dynamics and Their Application. Stanley Thornes (Publishers), London (1999)

    Google Scholar 

  7. Frisman, E.Y., Last, E.V., Skaletskaya, E.I.: Population dynamics of harvested species with complex age structure (for Pacific salmons fish stocks as an example). Ecol. Model. 198(3), 463–472 (2006)

    Article  Google Scholar 

  8. Pham, C.K., Isidro, E.: Experimental harvesting of juvenile common octopus Octopus vulgaris, for commercial ongrowing in the Azores. ARQUIPÉLAGO. Life Mar. Sci. 27, 41–47 (2010)

    Google Scholar 

  9. Milner, J.M., Bonenfant, C., Mysterud, A.: Hunting Bambi–evaluating the basis for selective harvesting of juveniles. Eur. J. Wildl. Res. 57(3), 565–574 (2011)

    Article  Google Scholar 

  10. Zhang, T., Meng, X., Song, Y.: The dynamics of a high-dimensional delayed pest management model with impulsive pesticide input and harvesting prey at different fixed moments. Nonlinear Dyn. 64(1–2), 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhdanova, O.L., Frisman, E.Y.: The effect of optimal harvesting on the dynamics of size and genetic composition of a two-age population. Biol. Bull. 41(2), 176–186 (2014a)

    Article  Google Scholar 

  12. Abakumov, A.I., Izrailsky, Y.G.: The harvesting effect on a fish population. Math. Biol. Bioinform. 11(2), 191–204 (2016). https://doi.org/10.17537/2016.11.191. (in Russ.)

    Article  Google Scholar 

  13. Murphy, L.F., Smith, S.J.: Optimal harvesting of an age-structured population. J. Math. Biol. 29(1), 77–90 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Langvatn, R., Loison, A.: Consequences of harvesting on age structure, sex ratio and population dynamics of red deer Cervus elaphus in central Norway. Wildl. Biol. 5(1), 213–223 (1999). https://doi.org/10.2981/wlb.1999.026

    Article  Google Scholar 

  15. Murphy, M.D., Crabtree, R.E.: Changes in the age structure of nearshore adult red drum off west-central Florida related to recruitment and fishing mortality. North Am. J. Fish. Manag. 21(3), 671–678 (2001)

    Article  Google Scholar 

  16. Song, X., Chen, L.: Optimal harvesting and stability for a two-species competitive system with stage structure. Math. Biosci. 170(2), 173–186 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marboutin, E., Bray, Y., Péroux, R., Mauvy, B., Lartiges, A.: Population dynamics in European hare: breeding parameters and sustainable harvest rates. J. Appl. Ecol. 40(3), 580–591 (2003)

    Article  Google Scholar 

  18. Liz, E., Pilarczyk, P.: Global dynamics in a stage-structured discrete-time population model with harvesting. J. Theor. Biol. 297, 148–165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wikström, A., Ripa, J., Jonzén, N.: The role of harvesting in age-structured populations: disentangling dynamic and age truncation effects. Theor. Popul. Biol. 82(4), 348–354 (2012)

    Article  MATH  Google Scholar 

  20. Zhdanova, O.L., Frisman, E.Y.: Model analysis of an optimal harvest effect on evolution of population with two age classes. Inf. Sci. Control Syst. 2(40), 12–21 (2014). (in Russian)

    Google Scholar 

  21. Abakumov, A.I., Il’in, O.I., Ivanko, N.S.: Game problems of harvesting in a biological community. Autom. Remote Control 77(4), 697–707 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, C., Liu, J., Chen, L.: Homoclinic bifurcation of a ratio-dependent predator–prey system with impulsive harvesting. Nonlinear Dyn. 89(3), 2001–2012 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lande, R., Sæther, B.E., Engen, S.: Threshold harvesting for sustainability of fluctuating resources. Ecology 78(5), 1341–1350 (1997)

    Article  Google Scholar 

  24. Idels, L.V., Wang, M.: Harvesting fisheries management strategies with modified effort function. Int. J. Model. Ident. Control 3(1), 83–87 (2008)

    Article  Google Scholar 

  25. Franco, D., Perán, J.: Stabilization of population dynamics via threshold harvesting strategies. Ecol. Complex. 14, 85–94 (2013)

    Article  Google Scholar 

  26. Upadhyay, R.K., Roy, P., Datta, J.: Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability. Nonlinear Dyn. 79(4), 2251–2270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cid, B., Hilker, F.M., Liz, E.: Harvest timing and its population dynamic consequences in a discrete single-species model. Math. Biosci. 248, 78–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Abakumov, A.I., Izrailsky, Y.G.E.: The stabilizing role of fish population structure under the influence of fishery and random environment variations. Comput. Res. Model. 9(4), 609–620 (2017)

    Article  Google Scholar 

  29. Skaletskaya, E.I., Frisman, E.Y., Shapiro, A.P.: Diskretnye modeli dinamiki chislennosti populyatsii i optimizatsiya promysla (Discrete Models of Population Dynamics and Optimization of Exploitation). (1979) (in Russian)

  30. Abakumov, A.I.: Upravlenie i optimizatsiya v modelyakh ekspluatiruemykh populyatsii. Management and Optimization in Models of Harvested Populations), Vladi vostok: Dal’nauka. (1993) (in Russian)

  31. Srinivasu, P.D.N., Ismail, S., Naidu, C.R.: Global dynamics and controllability of a harvested prey–predator system. J. Biol. Syst. 9(01), 67–79 (2001)

    Article  Google Scholar 

  32. Braumann, C.A.: Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. Math. Biosci. 177, 229–245 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Anita, S., Capasso, V., Arnautu, V.: An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB\({\textregistered }\). Springer, Berlin (2011)

    Book  Google Scholar 

  34. Sharma, S., Samanta, G.P.: Optimal harvesting of a two species competition model with imprecise biological parameters. Nonlinear Dyn. 77(4), 1101–1119 (2014). https://doi.org/10.1007/s11071-014-1354-9

    Article  MathSciNet  MATH  Google Scholar 

  35. Beverton, R.J.: On The Dynamics of Exploited Fish Populations, vol. 19. Her Majestys Stationery Office, London (1957)

    Google Scholar 

  36. Nikolsky, G.V.: The Theory of Dynamics of Fish Stock. Pishehevaya Promyshlennost, Moscow (1974). (in Russian)

    Google Scholar 

  37. Tyurin, P.V.: Normal curves of survival and rates of fish natural mortality as a theoretical base of fisheries regulations. Izv. GosNIORH 71, 71–128 (1972). (in Russian)

    Google Scholar 

  38. Kato, N.: Optimal harvesting for nonlinear size-structured population dynamics. J. Math. Anal. Appl. 342(2), 1388–1398 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Clark, C.W.: Mathematical Bioeconomics: The Mathematics of Conservation, vol. 91. John Wiley & Sons, Hoboken (2010)

    Google Scholar 

  40. RevutskayaO., Frisman, E.: Instability of the Exploited Population with a Simple Age Structure. In: Proceedings of Sixth Biennial Meeting International Congress on Environmental Modelling and Software. Managing Resources of a Limited Planet (2012)

  41. Revutskaya, O.L., Frisman, E.Ya.: Influence of stationary harvesting on development of a two-age population scenario. Inf. Sci. Control Syst. 3(53), 36–48 (2017). (in Russ.)

    Google Scholar 

  42. Larkin, P.A.: An epitaph for the concept of maximum sustained yield. Trans. Am. Fish. Soc. 106(1), 1–11 (1977)

    Article  Google Scholar 

  43. Ludwig, D., Hilborn, R., Walters, C.: Uncertainty, resource exploitation, and conservation: lessons from history. Science 260(5104), 17–36 (1993)

    Article  Google Scholar 

  44. Lande, R., Engen, S., Saether, B.E.: Optimal harvesting, economic discounting and extinction risk in fluctuating populations. Nature 372(6501), 88 (1994)

    Article  Google Scholar 

  45. Hilborn, R.: Do principles for conservation help managers? Ecol. Appl. 6(2), 364–365 (1996)

    Article  Google Scholar 

  46. Hilborn, R., Mangel, M.: The Ecological Detective: Confronting Models with Data, vol. 28. Princeton University Press, Princeton (1997)

    Google Scholar 

  47. Finley, C.: All the Fish in the Sea: Maximum Sustainable Yield and the Failure of Fisheries Management. University of Chicago Press, Chicago (2011)

    Book  Google Scholar 

  48. Brauer, F., Soudack, A.C.: Stability regions in predator–prey systems with constant-rate prey harvesting. J. Math. Biol. 8(1), 55–71 (1979a)

    Article  MathSciNet  MATH  Google Scholar 

  49. Brauer, F., Soudack, A.C.: Stability regions and transition phenomena for harvested predator-prey systems. J. Math. Biol. 7(4), 319–337 (1979b)

    Article  MathSciNet  MATH  Google Scholar 

  50. Fryxell, J.M., Packer, C., McCann, K., Solberg, E.J., Sæther, B.E.: Resource management cycles and the sustainability of harvested wildlife populations. Science 328(5980), 903–906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Frisman, E.Y., Neverova, G.P., Kulakov, M.P.: Change of dynamic regimes in the population of species with short life cycles: results of an analytical and numerical study. Ecol. Complex. 27, 2–11 (2016)

    Article  Google Scholar 

  52. Neverova, G.P., Yarovenko, I.P., Frisman, E.Y.: Dynamics of populations with delayed density dependent birth rate regulation. Ecol. Model. 340, 64–73 (2016)

    Article  Google Scholar 

  53. Revutskaya, O.L., Kulakov, M.P., Neverova, G.P., Frisman, E.Y.: Changing of the dynamics modes in populations with age and sex structure. Doklady Biol. Sci. 477(1), 239–243 (2017)

    Article  Google Scholar 

  54. Reed, W.J.: Optimum age-specific harvesting in a nonlinear population model. Biometrics 36(4), 579–593 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gurtin, M.E., Murphy, L.F.: On the optimal harvesting of persistent age-structured populations. J. Math. Biol. 13(2), 131–148 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  56. Aniţa, S.: Optimal harvesting for a nonlinear age-dependent population dynamics. J. Math. Anal. Appl. 226(1), 6–22 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  57. Frisman, E.Y., Neverova, G.P., Revutskaya, O.L.: Complex dynamics of the population with a simple age structure. Ecol. Model. 222(12), 1943–1950 (2011)

    Article  Google Scholar 

  58. Frisman, E.Y., Luppov, S.P., Skokova, I.N., Tuzinkevich, A.V.: Complex modes of population number dynamics with two age classes. Math. Investig. Popul. Ecol., 4–18. (1988) (in Russian)

  59. Shapiro, A.P., Luppov, S.P.: Rekurrentnye uravneniya v teorii populyatsionnoy biologii. Nauka, Moskva, pp.132. (1983) (in Russian)

  60. Kuznetsov, A.P., Sedova, J.V.: Bifurcations of three- and four-dimensional maps: universal properties. Izvestiya VUZ. Appl. Nonlinear Dyn. 20(5), 26–43 (2012) (in Russian)

  61. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  62. Butterworth, A., Richardson, M.: A review of animal welfare implications of the Canadian commercial seal hunt-a response to critique of paper MP13 172. Mar. Pol. 43, 379–381 (2014)

    Article  Google Scholar 

  63. Hammill, M.O., Stenson, G.B., Doniol-Valcroze, T., Mosnier, A.: Conservation of northwest Atlantic harp seals: past success, future uncertainty? Biol. Conserv. 192, 181–191 (2015)

    Article  Google Scholar 

  64. Skaletskaya, E.I., Frisman, E.Ya.: Stochastic model of population dynamics dynamics of the Northern fur seal. In: Matematicheskoe modelirovanie v populiatsionnykh issledovaniiakh (Mathematical modeling in population studies). Vladivostok, 75–80 (1990) (in Russian)

  65. Zhdanova, O.L., Kuzin, A.E., Skaletskaya, E.I., Frisman, E.Y.: Why the population of the northern fur seals (Callorhinus ursinus) of Tyuleniy Island does not recover following the harvest ban: analysis of 56 years of observation data. Ecol. Model. 363, 57–67 (2017)

    Article  Google Scholar 

  66. Moiseyev, P.A.: Biological Resources of the World Ocean. Agropromizdat, Moscow (1989). (in Russian)

    Google Scholar 

  67. Abakumov, A.I., Bocharov, L.N., Karedin, E.P., Reshetnyak, T.M.: The modelling analysis and prospective results of optimization of multispecific fishery in the waters of Kamchatka Shelf. Fish. Issues 8(1–29), 93–109 (2007). (in Russian)

    Google Scholar 

  68. Caro, T.M., Young, C.R., Cauldwell, A.E., Brown, D.D.E.: Animal breeding systems and big game hunting: models and application. Biol. Conserv. 142(4), 909–929 (2009)

    Article  Google Scholar 

  69. Tenhumberg, B., Tyre, A.J., Pople, A.R., Possingham, H.P.: Do harvest refuges buffer kangaroos against evolutionary responses to selective harvesting? Ecology 85(7), 2003–2017 (2004)

    Article  Google Scholar 

  70. Snyder, K.T., Freidenfelds, N.A., Miller, T.E.: Consequences of sex-selective harvesting and harvest refuges in experimental meta-populations. Oikos 123(3), 309–314 (2014)

    Article  Google Scholar 

  71. Liz, E., Ruiz-Herrera, A.: The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting. J. Math. Biol. 65(5), 997–1016 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. Naumenko, N.I.: Far-eastern herring: view in XXI century (publications review, brief history of investigations and fishery). Stud. Waters Biol. Res. Kamchatka North-West. Part Pac. 9, 185–190 (2007). (in Russian)

    Google Scholar 

  73. Ashikhmina, E.V., Izrailsky, Y.G., Frisman, E.Y.: Harvest optimization for Rikker’s population, when environment parameters limiting population growth change cyclically. Far East. Math. J. 4(1), 127–133 (2003). (in Russian)

    Google Scholar 

  74. Ashikhmina, E.V., Izrailsky, Y.G.: Harvest optimization for population, when environment conditions limiting population growth change cyclically. Inf. Sci. Control Syst. 2, 11–18 (2009). (in Russian)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Russian Foundation for Basic Research (No. 15-29-02658 ofi_m).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Neverova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neverova, G.P., Abakumov, A.I., Yarovenko, I.P. et al. Mode change in the dynamics of exploited limited population with age structure. Nonlinear Dyn 94, 827–844 (2018). https://doi.org/10.1007/s11071-018-4396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4396-6

Keywords

Navigation