Skip to main content
Log in

Anti-control of Hopf bifurcation in the Shimizu–Morioka system using an explicit criterion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider anti-control of Hopf bifurcation for the Shimizu–Morioka system by using an explicit criterion. We first provide the two conditions for the existence of Hopf bifurcation, that is, eigenvalue assignment and transversality conditions, which could be formulated through the coefficients of characteristic equation, and the obtained conditions do not need to calculate the eigenvalue and eigenvalue’s derivatives. The center manifold theory and normal form reduction are utilized to derive the nonlinear gains for controlling the stability of the created limit circle. In addition, we further improve the computing formulas of amplitude and frequency of Hopf limit cycle. Numerical analysis also verifies the effectiveness of the proposed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, G.R., Moiola, J.L., Wang, H.O.: Bifurcation control: theories, methods, and applications. Int. J. Bifurc. Chaos 10(3), 511–548 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728–2733 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, H.O., Abed, E.H.: Bifurcation control of a chaotic system. Automatica 31(9), 1213–1226 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yassen, M.T.: Adaptive chaos control and synchronization for uncertain new chaotic dynamical system. Phys. Lett. A 350(1), 36–43 (2006)

    Article  MATH  Google Scholar 

  5. Yin, C., Chen, Y.Q., Zhong, M.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yin, C., Cheng, Y.H., Chen, Y.Q., Stark, B., Zhong, S.M.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82(1), 39–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gu, G.X., Sparks, A., Banda, S.: Bifurcation based nonlinear feedback control for rotating stall in axial flow compressors. Int. J. Control 68(6), 1241–1258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yabuno, H.: Bifurcation control of parametrically excited duffing system by a combined linear-plus-nonlinear feedback control. Nonlinear Dyn. 12(3), 263–274 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhu, L.H., Zhao, H.Y., Wang, X.M.: Bifurcation analysis of a delay reaction–diffusion malware propagation model with feedback control. Commun. Nonlinear Sci. Numer. Simul. 22(1), 747–768 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, D.S., Wang, H.O., Chen, G.R.: Anti-control of Hopf bifurcations. IEEE Trans. Circuits Syst. I FTA. 48(6), 661–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  12. Hassard, B.D., Kazarinoff, N.D.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  13. Du, Y.H., Lou, Y.: S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator–prey model. J. Differ. Equ. 144(2), 390–440 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, T., Liao, X.F., Li, H.Q.: Stability and Hopf bifurcation in a computer virus model with multistate antivirus. Abstr. Appl. Anal. 2012(2), 374–388 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Dong, T., Liao, X.F., Wang, A.J.: Stability and Hopf bifurcation of a complex-valued neural network with two time delays. Nonlinear Dyn. 82(1), 1–12 (2015)

  16. Feng, L.P., Liao, X.F., Li, H.Q., Han, Q.: Hopf bifurcation analysis of a delayed viral infection model in computer networks. Math. Comput. Model. 56(7), 167–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marsden, J.E., Mccracken, M.: The Hopf Bifurcation and its Applications. Springer, New York (1976)

    Book  MATH  Google Scholar 

  18. Song, Y.L., Han, M.A., Wei, J.J.: Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Phys. D 200(3), 185–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shimizu, T., Morioka, N.: On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys. Lett. A 76(3), 201–204 (1980)

    Article  MathSciNet  Google Scholar 

  20. El-Dessoky, M.M., Yassen, M.T., Aly, E.S.: Bifurcation analysis and chaos control in Shimizu–Morioka chaotic system with delayed feedback. Appl. Math. Comput. 243(24), 283–297 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Llibre, J., Pessoa, C.: The Hopf bifurcation in the Shimizu–Morioka system. Nonlinear Dyn. 79(3), 2197–2205 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tigan, G., Turaev, D.: Analytical search for homoclinic bifurcations in the Shimizu–Morioka model. Phys. D 240(12), 985–989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Islam, N., Islam, B., Mazumdar, H.P.: Generalized chaos synchronization of unidirectionally coupled Shimizu–Morioka dynamical systems. Differ. Geom. Dyn. Syst. 13, 101–106 (2011)

    MathSciNet  Google Scholar 

  24. Sundarapandian, V.: Sliding mode controller design for synchronization of Shimizu–Morioka chaotic systems. IJIST 1(1), 20–29 (2011)

    MathSciNet  Google Scholar 

  25. Sundarapandian, V.: Adaptive control and synchronization of Shimizu–Morioka chaotic system. IJFCST 2(4), 29–42 (2012)

    Article  Google Scholar 

  26. Wen, G.L., Xu, H.D., Lv, Z.Y., Zhang, S.J., Wu, X., Liu, J., Yin, S.: Anti-controlling Hopf bifurcation in a type of centrifugal governor system. Nonlinear Dyn. 81(1), 811–822 (2015)

    Article  MATH  Google Scholar 

  27. Chen D., Wang H.O., Chen G.R.: Anti-control of Hopf bifurcations through washout filters. In: Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No. 98CH36171), vol. 3, pp. 3040–3045 (1998)

  28. Liu, W.M.: Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cheng, Z.S.: Anti-control of Hopf bifurcation for Chen’s system through washout filters. Neurocomputing 73(16–18), 3139–3146 (2010)

    Article  Google Scholar 

  30. Hassouneh, M.A., Lee, H.C., Abed, E.H.: Washout filters in feedback control: benefits, limitations and extensions. In: Proceedings of the American Control Conference, vol. 5, pp. 3950–3955 (2004)

  31. Jury, E., Pavlidis, T.: Stability and aperiodicity constraints for system design. IEEE Trans. Circuit Theory 10(1), 137–141 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2016 YFB0800601, in part by the National Natural Science Foundation of China under Grant 61472331, in part by the Talents of Science and Technology Promote Plan, Chongqing Science & Technology Commission, in part by the National Natural Science Foundation of Hubei province of China (2015CFB264), in part by the National Natural Science Foundation of China under Grant 61503310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liao, X. & Dong, T. Anti-control of Hopf bifurcation in the Shimizu–Morioka system using an explicit criterion. Nonlinear Dyn 89, 1453–1461 (2017). https://doi.org/10.1007/s11071-017-3527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3527-9

Keywords

Navigation