Skip to main content
Log in

Synchronization of multi-agent systems with heterogeneous controllers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies synchronization in a multi-agent system, which is defined as a situation where all the agents in a group are required to achieve a common velocity direction. The agents are assumed to be coupled through controller gains that are not necessarily identical or homogeneous, which addresses a practical scenario where the gains may vary nominally due to minor implementation errors or drastically due to major faults or errors. The paper analyzes the effect of heterogeneous gains on the common velocity direction at which the system of agents synchronizes. Conditions under which heterogeneous controller gains result in a synchronized formation are derived and it is shown that the resulting common velocity direction lies in the conic hull of the initial velocity vectors of agents. A detailed analysis of the two agents system shows that there exists a less restrictive condition on heterogeneous gains that results in synchronization. Effect of saturation is also studied for two cases when the controller gains are bounded and when the control efforts are bounded. Both all-to-all and limited communication topologies are considered. Simulations are given to support the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ren, W., Beard, R.W.: Distributive Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. Springer-Verlag, London (2008)

    Book  MATH  Google Scholar 

  2. Mesbahi, M., Egerstedt, M.: Graph Theoretical Methods in Multiagent Networks. Princeton University Press, Princeton (2010)

    Book  MATH  Google Scholar 

  3. Rezaee, H., Abdollahi, F.: Motion synchronization in unmanned aircrafts formation control with communication delays. Commun. Nonlinear Sci. Numer. Simulat. 18, 744–756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sahoo, S.R., Banavar, R.N.: Attitude synchronization of satellites with internal actuation. Eur. J. Control 20, 152–161 (2014)

    Article  MATH  Google Scholar 

  5. Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, H., Lewis, F.L., Das, A.: Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans. Autom. Control 56(8), 1948–1952 (2011)

    Article  MathSciNet  Google Scholar 

  7. Li, Z.K., Duan, Z.S., Lewis, F.L.: Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties. Automatica 50(3), 883–889 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Su, S., Lin, Z., Garcia, A.: Distributed synchronization control of multiagent systems with unknown nonlinearities. IEEE Trans. Cybern. 46(1), 325–338 (2016)

    Article  Google Scholar 

  9. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D: Nonlinear Phenom. 143(1–4), 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion: all-to-all communication. IEEE Trans. Autom. Control 52(5), 811–824 (2007)

    Article  MathSciNet  Google Scholar 

  11. Mei, J., Ren, W., Chen, J.: Consensus of second-order heterogeneous multi-agent systems under a directed graph. In: Proc. American Control Conference, Portland, Oregon, USA, 802–807 (2014)

  12. Sinha, A., Ghose, D.: Generalization of linear cyclic pursuit with application to rendezvous of multiple autonomous agents. IEEE Trans. Autom. Control 51(11), 1819–1824 (2006)

    Article  MathSciNet  Google Scholar 

  13. Seyboth, G.S., Wu, J., Qin, J., Yu, C., Allgöwer, F.: Collective circular motion of unicycle type vehicles with nonidentical constant velocities. IEEE Trans. Control Netw. Syst. 1(2), 167–176 (2014)

    Article  MathSciNet  Google Scholar 

  14. Chen, Z., Zhang, H.-T.: A remark on collective circular motion of heterogeneous multi-agents. Automatica 49(5), 1236–1241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, H., Shim, H., Seo, J.H.: Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans. Autom. Control 56(1), 200–206 (2011)

    Article  MathSciNet  Google Scholar 

  16. Choi, Y.H., Yoo, S.J.: Adaptive synchronized tracking of heterogeneous spherical robots using distributed hierarchical sliding surfaces under a directed graph. Nonlinear Dyn. 85, 913–922 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhai, S., Li, Q.: Practical bipartite synchronization via pinning control on a network of nonlinear agents with antagonistic interactions. Nonlinear Dyn. 87, 207–218 (2016). doi:10.1007/s11071-016-3036-2

    Article  Google Scholar 

  18. Xi, J., He, M., Liu, H., Zheng, J.: Admissible output consensualization control for singular multi-agent systems with time delays. J. Franklin Inst. 353, 4074–4090 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, Y., Su, H., Shi, P., Shu, Z., Wu, Z.-G.: Consensus of multiagent systems using aperiodic sampled-data control. IEEE Trans. Cybern. 46(9), 2132–2143 (2016)

    Article  Google Scholar 

  20. Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.-G.: Adaptive output synchronization of heterogeneous network with an uncertain leader. Automatica 76, 183–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, Y., Meng, X., Xie, L., Lu, R., Su, H., Wu, Z.-G.: An input-based triggering approach to leader-following problems. Automatica 75, 221–228 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, Y., Su, H., Shi, P., Lu, R., Wu, Z.-G.: Output synchronization of non-identical linear multi-agent systems. IEEE Trans. Cybern. 47(1), 130–141 (2017)

    Article  Google Scholar 

  23. Jain, A, Ghose, D.: Collective behavior with heterogeneous controllers. In: American Control Conference, Washington, DC, USA, 4636–4641 (2013)

  24. Dorfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dong, J.-G., Xue, X.: Finite-time synchronization of Kuramoto-type oscillators. Nonlinear Anal Real world Appl 26, 133–149 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hong, H., Strogatz, S.H.: Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. Phys. Rev. Lett. 106(5), 1–4 (2011)

    Article  Google Scholar 

  27. Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the Kuramoto model of coupled nonlinear oscillators. In: American Control Conference, Boston, MA, 4296–4301 (2004)

  28. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54(2), 353–357 (2009)

    Article  MathSciNet  Google Scholar 

  29. Tousi, M., Moghaddam, R.K., Pariz, N.: Synchronization in oscillator networks with time delay and limited non-homogeneous coupling strength. Nonlinear Dyn. 82, 1–8 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cai, N., Cao, J.-W., Ma, H.-Y., Wang, C.-X.: Swarm stability analysis of nonlinear dynamical multi-agent systems via relative Lyapunov function. Arab. J. Sci. Eng. 39(3), 2427–2434 (2014)

  31. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (2000)

    MATH  Google Scholar 

  32. Strang, G.: Linear Algebra and its Applications, 4th edn. Cengage Learning, Boston (2007)

    MATH  Google Scholar 

  33. Bai, H., Arcak, M., Wen, J.: Cooperative Control Design: A Systematic, Passivity-based Approach. Springer-Verlag, New York (2011)

    Book  MATH  Google Scholar 

  34. Sepulchre, R., Paley, D.A., Leonard, N.E.: Stabilization of planar collective motion with limited communication. IEEE Trans. Autom. Control 53(3), 706–719 (2008)

    Article  MathSciNet  Google Scholar 

  35. Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics. American Mathematical Soc, Providence, Rhode Island (2002)

    MATH  Google Scholar 

  36. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1972)

    MATH  Google Scholar 

  37. Nef, W.: Linear Algebra, Euro. Mathematics Series. Dover Publications Inc, Mineola (1988)

    MATH  Google Scholar 

  38. Marshall, J.A., Broucke, M.E., Francis, B.A.: Formations of vehicles in cyclic pursuit. IEEE Trans. Autom. Control 49(11), 1963–1974 (2004)

    Article  MathSciNet  Google Scholar 

  39. Lee, T.-C., Song, K.-T., Lee, C.-H., Teng, C.-C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Sys. Tech. 9(2), 305–318 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, A., Ghose, D. Synchronization of multi-agent systems with heterogeneous controllers. Nonlinear Dyn 89, 1433–1451 (2017). https://doi.org/10.1007/s11071-017-3526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3526-x

Keywords

Navigation