Skip to main content
Log in

Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A distributed-order time- and Riesz space-fractional Schrödinger equation (DOT–RSFSE) is considered. Distributed-order derivatives indicate fractional derivatives that are integrated over the order of the differentiation within a given range. That is to say, the order of the time derivative ranges from zero to one. The space-fractional derivative is defined in the Riesz sense. In this paper, a new numerical approach is developed for simulating DOT–RSFSE. The main characteristic behind this approach is to investigate a space-time spectral approximation for spatial and temporal discretizations. Firstly, the given problem in one and two dimensions is transformed into a system of distributed-order fractional differential equations by using Jacobi–Gauss–Lobatto (J–G–L) collocation approach. Then, an efficient spectral method based on Jacobi–Gauss–Radau (J–G–R) collocation approach is applied to solve this system. Furthermore, the error of the approximate solution is theoretically estimated and numerically confirmed in both temporal and spatial discretizations. In order to highlight the effectiveness of our approaches, several numerical examples are given and compared with those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, River Edge (2000)

    Book  MATH  Google Scholar 

  3. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dyn. 84, 1553–1567 (2016)

    Article  Google Scholar 

  4. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moghaddam, B.P., Machado, J.T.: Extended algorithms for approximating variable order fractional derivatives with applications. J. Sci. Comput. (2016). doi:10.1007/s10915-016-0343-1

    Google Scholar 

  6. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler-Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhrawy, A.H., Zaky, M.A., Machado, J.T.: Efficient Legendre spectral tau algorithm for solving two-sided space–time Caputo fractional advection–dispersion equation. J. Vib. Control 22, 2053–2068 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bhrawy, A.H., Zaky, M.A., Machado, J.T.: Numerical solution of the two-sided space–time fractional telegraph equation via Chebyshev Tau approximation. J. Optim. Theory Appl. (2016). doi:10.1007/s10957-016-0863-8

    Google Scholar 

  9. Zaky, M.A., Ezz-Eldien, S.S., Doha, E.H., Machado, J.T., Bhrawy, A.H.: An efficient operational matrix technique for multi-dimensional variable-order time fractional diffusion equations. J. Comput. Nonlinear Dyn. 11, 061002 (2016)

    Article  Google Scholar 

  10. Bhrawy, A.H., Zaky, M.A.: An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duong, P.L.T., Kwok, E., Lee, M.: Deterministic analysis of distributed order systems using operational matrix. Appl. Math. Model. 40, 1929–1940 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bhrawy, A.H., Zaky, M.A.: Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations. Appl. Math. Model. 40, 832–845 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order caputo fractional functional differential equation. Nonlinear Dyn. 85, 1815–1823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)

    Article  MATH  Google Scholar 

  17. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  19. Laskin, N.: Lévy flights over quantum paths. Commun. Nonlinear Sci. Numer. Simul. 12, 2–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bayin, S.S.: On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys. 53, 042105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Al-Saqabi, B., Boyadjiev, L., Luchko, Y.: Comments on employing the Riesz–Feller derivative in the Schrödinger equation. Eur. Phys. J. Spec. Top. 222, 1779–1794 (2013)

    Article  Google Scholar 

  25. Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 082104 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fujioka, J., Espinosa, A., Rodríguez, R.F.: Fractional optical solitons. Phys. Lett. A 374, 1126–1134 (2010)

    Article  MATH  Google Scholar 

  27. Amore, P., Femaández, F.M., Hofmann, C.P., Sáenz, R.A.: Collocation method for fractional quantum mechanics. J. Math. Phys. 51(12), 122101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, 468–477 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Zhao, X., Sun, Z-z, Hao, Z-p: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)

    Article  MATH  Google Scholar 

  30. Yang, Z.: A class of linearized energy-conserved finite difference schemes for nonlinear space-fractional Schrödinger equations. Int. J. Comput. Math. 93, 609–626 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hu, J., Xin, J., Lu, H.: The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition. Comput. Math. Appl. 62, 1510–1521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74, 499–525 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45, 3339–3352 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, S., Xu, M.: Generalized fractional Schrödinger equation with space–time fractional derivatives. J. Math. Phys. 48, 043502 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dong, J., Xu, M.: Space–time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344, 1005–1017 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    Article  MathSciNet  Google Scholar 

  37. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics. Eng. Anal. Bound. Elem. 37, 475–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  40. Caputo, M.: Mean fractional order derivatives: differential equations and filters. Ann. Univ. Ferrara-Sez. 41, 73–84 (1995)

    MathSciNet  MATH  Google Scholar 

  41. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations. Part I. Int. J. Appl. Math. 2(7), 865–882 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Naber, M.: Distributed order fractional sub-diffusion. Fractals 12, 23–32 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kochubei, A.N.: Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340, 252–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Atanackovic, T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)

    Article  MATH  Google Scholar 

  47. Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, 259–280 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Ford, N., Morgado, M.: Distributed order equations as boundary value problems. Comput. Math. Appl. 64, 2973–2981 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Existence and calculation of the solution to the time distributed order diffusion equation. Phys. Scr. 2009, 014012 (2009)

    Article  Google Scholar 

  50. Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Anaya, G.F., Antonio, G.N., Galante, J.J., Vega, R.M., Martínez, E.G.: Asymptotic stability of distributed order nonlinear dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 48, 541–549 (2017)

    Article  MathSciNet  Google Scholar 

  52. Eab, C.H., Lim, S.C.: Fractional Langevin equations of distributed order. Phys. Rev. E 83, 031136 (2011)

    Article  MathSciNet  Google Scholar 

  53. Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Martins, J., Ribeiro, H.V., Evangelista, L.R., Silva, L.R., Lenzi, E.K.: Fractional Schrödinger equation with noninteger dimensions. Appl. Math. Comput. 219(4), 2313–2319 (2012)

    MathSciNet  MATH  Google Scholar 

  56. Bayn, S.S.: Time fractional Schrödinger equation: Fox’s H-functions and the effective potential. J. Math. Phys. 54(1), 012103 (2013)

    Article  MathSciNet  Google Scholar 

  57. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Van Gorder, R.A.: A new Jacobi spectral collocation method for solving 1 + 1 fractional Schrödinger equations and fractional coupled Schrödinger systems. EPJ Plus 129, 1–21 (2014)

    Google Scholar 

  58. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

  60. Main, M., Delves, L.M.: The convergence rates of expansions in Jacobi polynomials. Numer. Math. 27, 219–225 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  61. Eslahchi, M.R., Dehghan, M., Parvizi, M.: Application of the collocation method for solving nonlinear fractional integro-differential equations. J. Comput. Appl. Math. 257, 105–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Morgado, M.L., Rebelo, M., Ferrás, L.L., Ford, N.: Numerical solution for diffusion equations with distributed order in time using a Chebyshev collocation method. Appl. Numer. Math. 114, 108–123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  64. Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Professor Ali H. Bhrawy, who passed away shortly after its completion. The authors are very grateful to the editor and reviewers for carefully reading the paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zaky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Zaky, M.A. Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn 89, 1415–1432 (2017). https://doi.org/10.1007/s11071-017-3525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3525-y

Keywords

Navigation