Skip to main content
Log in

Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with system uncertainties and unknown dead-zone nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a robust adaptive self-organizing neuro-fuzzy control (RASNFC) scheme for tracking of unmanned underwater vehicle with uncertainties and the unknown dead-zone nonlinearity is proposed. The proposed RASNFC scheme comprises an estimation-based adaptive controller (EBAC) using a self-organizing neuro-fuzzy network (SNFN) and a robust controller. The EBAC controller is constructed with a novel sliding mode reaching law control framework, and the unknown dynamic function is identified by the SNFN approximator which is able to online self-construct a neuro-fuzzy network with dynamic structure by generating and pruning fuzzy rule. The robust controller is employed to provide the finite \(L_{2}\)-gain property to cope with reconstruction errors such that the robustness of the entire closed-loop control system is enhanced. Theoretical analysis shows that tracking errors and their derivatives are asymptotically stable and all signals in the closed-loop system are bounded. Comparative simulation results demonstrate the effectiveness and superiority of the proposed RASNFC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fossen, T.I.: Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics AS, Trondheim (2002)

    Google Scholar 

  2. von Alt, C.: Autonomous Underwater Vehicles. Woods Hole Oceanographic Institution, Woods Hole (2003)

    Google Scholar 

  3. Venugopal, K.P., Sudhakar, R., Pandya, A.S.: On-line learning control of autonomous underwater vehicles using feedforward neural networks. IEEE J. Ocean. Eng. 17, 308–319 (1992)

    Article  Google Scholar 

  4. Conte, G., Serrani, A.: Global robust tracking with disturbance attenuation for unmanned underwater vehicles. In: Proceedings of IEEE Conference Control Appl, pp. 1094–1098, Trieste, Italy (1998)

  5. Bi, F.Y., Wei, Y.J., Zhang, J.Z., Cao, W.: Position-tracking control of underactuated autonomous underwater vehicles in the presence of unknown ocean currents. IET Control Theory Appl. 4, 2369–2380 (2009)

    Article  MathSciNet  Google Scholar 

  6. Luo, W., Soares, C.G., Zou, Z.: Neural-network and \(L_2\)-gain-based cascaded control of underwater robot thrust. IEEE J. Ocean. Eng. 39, 630–640 (2014)

    Article  Google Scholar 

  7. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  8. Yoerger, D.N., Slotine, J.E.: Robust trajectory control of underwater vehicles. IEEE J. Ocean. Eng. OE–10, 462–470 (1985)

    Article  Google Scholar 

  9. Goheen, K., Jefferys, E.: Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE J. Ocean. Eng. 15, 144–151 (1990)

    Article  Google Scholar 

  10. Healey, A.J., Lienard, D.: Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Ocean. Eng. 18, 327–339 (1993)

    Article  Google Scholar 

  11. Lee, P.M., Hong, S.W., Lim, Y.K., Lee, C.M., Jeon, B.H., Park, J.W.: Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE J. Ocean. Eng. 24, 388–395 (1999)

    Article  Google Scholar 

  12. McGookin, E.W.: Reconfigurable sliding mode control for submarine manoeuvring. In: IEEE Proceedings Oceans 01, pp. 1775-1782. Honolulu, U.S.A. (2001)

  13. Tong, S.C., Li, H.X.: Direct adaptive fuzzy output tracking control of nonlinear systems. Fuzzy Sets Syst. 128, 107–115 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mehrdad, H., Saeed, G.: Hybrid adaptive fuzzy identification and control of nonlinear systems. IEEE Trans. Fuzzy Syst. 10, 198–210 (2002)

    Article  Google Scholar 

  15. Li, H.X., Tong, S.C.: A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans. Fuzzy Syst. 11, 24–34 (2003)

    Article  Google Scholar 

  16. Yang, Y., Ren, J.: Adaptive fuzzy robust tracking controller design via small gain approach and its application. IEEE Trans. Fuzzy Syst. 11, 783–795 (2003)

    Article  Google Scholar 

  17. Chen, B., Liu, X.P., Tong, S.C.: Adaptive fuzzy output tracking control of MIMO nonlinear uncertain systems. IEEE Trans. Fuzzy Syst. 15, 287–300 (2007)

    Article  Google Scholar 

  18. Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 40, 170–184 (2010)

    Article  Google Scholar 

  19. Ge, S.S., Wang, C.: Direct adaptive NN control of a class of nonlinear systems. IEEE Trans. Neural Netw. 13, 214–221 (2002)

    Article  Google Scholar 

  20. Chen, M., Ge, S.S., Voon Ee How, B.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21, 796–812 (2010)

    Article  Google Scholar 

  21. Liu, Y.J., Tong, S.C., Wang, D., Li, T.S., Chen, C.L.P.: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans. Neural Netw. 22, 1328–1334 (2011)

    Article  Google Scholar 

  22. Liu, Z., Li, C.W.: Fuzzy neural networks quadratic stabilization output feedback control for biped robots via approach. IEEE Trans. Syst. Man Cybern. B Cybern. 33, 67–84 (2003)

    Google Scholar 

  23. Sun, F.C., Li, H.X., Liu, H.P.: Neuron-fuzzy dynamic-inversion-based adaptive control for robotic manipulators-discrete time case. IEEE Trans. Ind. Electron. 54, 1342–1351 (2007)

    Article  Google Scholar 

  24. Wai, R.J., Muthusamy, R.: Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics. IEEE Trans. Neural Netw. Learn. Syst. 24, 274–287 (2013)

    Article  Google Scholar 

  25. Kayacan, E., Ramon, H., Saeys, W.: Adaptive neuro-fuzzy control of a spherical rolling robot using sliding mode control theory based online learning algorithm. IEEE Trans. Cybern. 43, 170–179 (2013)

    Article  Google Scholar 

  26. Peng, L., Woo, P.Y.: Neural-fuzzy control system for robotic manipulators. IEEE Control Syst. Mag. 22, 53–63 (2002)

    Article  Google Scholar 

  27. Wai, R.J., Chen, P.C.: Robust neural-fuzzy-network control for robot manipulator including actuator dynamics. IEEE Trans. Ind. Electron. 53, 1328–1349 (2006)

    Article  Google Scholar 

  28. Sharma, R., Gopal, M.: A Markov game adaptive fuzzy controller for robot manipulator. IEEE Trans. Fuzzy Syst. 16, 171–186 (2008)

    Article  Google Scholar 

  29. Wang, N., Qian, C.J., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  30. Wang, N., Sun, J.C., Er, M.J., Liu, Y.C.: A novel extreme learning control framework of unmanned surface vehicles. IEEE Trans. Cybern. 46, 1106–1117 (2016)

    Article  Google Scholar 

  31. Wang, N., Han, M., Dong, N., Er, M.J.: Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification. Neurocomputing 128, 59–72 (2014)

    Article  Google Scholar 

  32. Sun, J., Wang, N., Er, M.J., Liu, Y.: Extreme learning control of surface vehicles with unknown dynamics and disturbances. Neurocomputing 167, 535–542 (2015)

    Article  Google Scholar 

  33. Polycarpou, M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41, 447–451 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chatchanayuenyong, T., Parnichkun, M.: Neural network based-time optimal sliding mode control for an autonomous underwater robot. Mechatronics 16, 471–478 (2006)

    Article  Google Scholar 

  35. Sebastian, E., Sotelo, M.A.: Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J. Intell. Robot. Syst. Theor. Appl. 49, 189–215 (2007)

    Article  Google Scholar 

  36. Zhang, L.J., Qi, X., Pang, Y.J.: Adaptive output feedback control based on DRFNN for AUV. IEEE J. Ocean. Eng. 36, 716–722 (2009)

    Article  Google Scholar 

  37. Wang, W.Y., Chien, Y.H., Leu, Y.G., Lee, T.T.: Adaptive T–S fuzzy-neural modeling and control for general MIMO unknown nonaffine nonlinear systems using projection update laws. Automatica 46(5), 852–863 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gao, Y., Er, M.J.: Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 11, 462–477 (2003)

    Article  Google Scholar 

  39. Leng, G., McGinnity, T.M., Prasad, G.: Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Trans. Fuzzy Syst. 14, 755–766 (2006)

    Article  Google Scholar 

  40. Chen, C.S.: Dynamic structure neural-fuzzy networks for robust adaptive control of robot manipulators. IEEE Trans. Ind. Electron. 55, 3402–3414 (2008)

    Article  Google Scholar 

  41. Wang, N., Sun, J.C., Er, M.J., Liu, Y.C.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  42. Wang, N., Er, M.J.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23, 991–1002 (2015)

    Article  Google Scholar 

  43. Tong, S., Wang, T., Li, Y.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2014)

    Article  Google Scholar 

  44. Wang, X.S., Su, C.Y., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40, 407–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51, 504–511 (2006)

    Article  MathSciNet  Google Scholar 

  46. Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49, 1751–1759 (2004)

    Article  MathSciNet  Google Scholar 

  47. Lewis, F., Tim, W.K., Wang, L.Z., Li, Z.: Deadzone compensation in motion control systems using adaptive fuzzy logic control. IEEE Trans. Control Syst. Technol. 7, 731–742 (1999)

    Article  Google Scholar 

  48. Jang, J.O.: A deadzone compensator of a DC motor system using fuzzy logic control. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 31, 42–48 (2001)

    Article  Google Scholar 

  49. Chen, B., Liu, X., Liu, K., Lin, C.: Fuzzy approximation-based adaptive control of nonlinear delayed systems with unknown dead zone. IEEE Trans. Fuzzy Syst. 22, 237–248 (2014)

    Article  Google Scholar 

  50. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2012)

    Article  Google Scholar 

  51. Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)

    Article  Google Scholar 

  52. Li, Y., Tong, S., Liu, Y., Li, T.: Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on small-gain approach. IEEE Trans. Fuzzy Syst. 22(1), 164–176 (2014)

    Article  Google Scholar 

  53. Yoerger, D.R., Cooke, J.G., Slotine, J.E.: The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE J. Ocean. Eng. 15, 167–178 (1990)

  54. Whitcomb, L.L., Yoerger, D.R.: Preliminary experiments in model-based thruster control for underwater vehicle positioning. IEEE J. Ocean. Eng. 24, 495–506 (1999)

    Article  Google Scholar 

  55. Gao, W., Hung, J.C.: Variable structure control of nonliear systems: a new approach. IEEE Trans. Ind. Electron. 40, 45–55 (1993)

    Article  Google Scholar 

  56. Wang, N., Er, M.J., Han, M.: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks. IEEE Trans. Cybern. 45, 2732–2743 (2015)

    Article  Google Scholar 

  57. Wang, N., Er, M.J., Han, M.: Dynamic tanker steering control using generalized-ellipsoidal-basis-function-based fuzzy neural networks. IEEE Trans. Fuzzy Syst. 23, 1414–1427 (2015)

    Article  Google Scholar 

  58. Wang, N.: A generalized ellipsoidal basis function based online self-constructing fuzzy neural network. Neural Process. Lett. 34, 13–37 (2011)

    Article  Google Scholar 

  59. Wang, N., Er, M.J., Meng, X., Li, X.: An online self-organizing scheme for parsimonious and accurate fuzzy neural networks. Int. J. Neural Syst. 20, 389–403 (2010)

    Article  Google Scholar 

  60. Wang, N., Er, M.J., Meng, X.: A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks. Neurocomputing 72, 3818–3829 (2009)

    Article  Google Scholar 

  61. Chen, B.S., Lee, C.H.: \(H_{\infty }\) tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4, 32–43 (1996)

    Article  Google Scholar 

  62. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  63. Choi, J.K., Kond, H.: On fault-tolerant control of a hovering AUV with four horizontal and two vertical thrusters. In: IEEE Proceedings on Oceans 10, Sydney, Australia (2010)

Download references

Acknowledgements

The authors would like to thank Associate Editor and the referees for their very careful comments and helpful suggestions which improved this technical note significantly. This work is supported by the National Natural Science Foundation of PR China (under Grants 51479018 and 51379002) and Fundamental Research Funds for the Central Universities of PR China (under Grants 3132016335 and 3132016314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yancheng Liu or Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, Y. & Wang, N. Robust adaptive self-organizing neuro-fuzzy tracking control of UUV with system uncertainties and unknown dead-zone nonlinearity. Nonlinear Dyn 89, 1397–1414 (2017). https://doi.org/10.1007/s11071-017-3524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3524-z

Keywords

Navigation