Skip to main content
Log in

Onset of colored-noise-induced chaos in the generalized Duffing system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The effects of colored noise, red noise and green noise, on the onset of chaos are investigated theoretically and confirmed numerically in the generalized Duffing system with a fractional-order deflection. Analytical predictions concerning the chaotic thresholds in the parameter space are derived by using the stochastic Melnikov method combined with the mean-square criterion. To qualitatively confirm the analytical results, numerical simulations obtained from the mean largest Lyapunov exponent are used as test beds. We show that colored noise can induce chaos, and the effects for the case of red noise on the onset of chaos differ from those for the case of green noise. The most noteworthy result of this work is the formula, which relates the chaotic thresholds among red, green and white noise, holds for noise-induced chaos in the Duffing system. We also show that Gaussian white noise can induce chaos more easily than colored noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sagués, F., Sancho, J.M., García-Ojalvo, J.: Spatiotemporal order out of noise. Rev. Mod. Phys. 79(3), 829 (2007)

    Article  Google Scholar 

  2. Tél, T., Lai, Y.C.: Quasipotential approach to critical scaling in noise-induced chaos. Phys. Rev. E 81(5), 056208 (2010)

    Article  Google Scholar 

  3. Schiff, S.J., Jerger, K., Duong, D.H., Chang, T., Spano, M.L., Ditto, W.L., et al.: Controlling chaos in the brain. Nature 370(6491), 615–620 (1994)

    Article  Google Scholar 

  4. Earn, D.J., Rohani, P., Bolker, B.M., Grenfell, B.T.: A simple model for complex dynamical transitions in epidemics. Science 287(5453), 667–670 (2000)

    Article  Google Scholar 

  5. Crutchfield, J.P., Huberman, B.A.: Fluctuations and the onset of chaos. Phys. Lett. A 77(6), 407–410 (1980)

    Article  MathSciNet  Google Scholar 

  6. Crutchfield, J.P., Farmer, J.D., Huberman, B.A.: Fluctuations and simple chaotic dynamics. Phys. Rep. 92(2), 45–82 (1982)

    Article  MathSciNet  Google Scholar 

  7. Hirsch, J.E., Nauenberg, M., Scalapino, D.J.: Intermittency in the presence of noise: a renormalization group formulation. Phys. Lett. A 87(8), 391–393 (1982)

    Article  MathSciNet  Google Scholar 

  8. Iansiti, M., Hu, Q., Westervelt, R.M., Tinkham, M.: Noise and chaos in a fractal basin boundary regime of a josephson junction. Phys. Rev. Lett. 55(7), 746 (1985)

    Article  Google Scholar 

  9. Liu, Z., Lai, Y.C., Billings, L., Schwartz, I.B.: Transition to chaos in continuous-time random dynamical systems. Phys. Rev. Lett. 88(12), 124101 (2002)

    Article  Google Scholar 

  10. Lai, Y.C., Liu, Z., Billings, L., Schwartz, I.B.: Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. Phys. Rev. E 67(2), 026210 (2003)

    Article  MathSciNet  Google Scholar 

  11. Bulsara, A.R., Schieve, W.C., Jacobs, E.W.: Homoclinic chaos in systems perturbed by weak langevin noise. Phys. Rev. A 41(2), 668 (1990)

    Article  MathSciNet  Google Scholar 

  12. Frey, M., Simiu, E.: Equivalence between motions with noise-induced jumps and chaos with smale horseshoes. In: Lutes, L.D., Niedzwecki, J.M. (eds.) Engineering Mechanics, pp. 660–663. ASCE, Balkema, Rotterdam (1992)

    Google Scholar 

  13. Lin, H., Yim, S.C.S.: Chaotic roll motion and capsize of ships under periodic excitation with random noise. Appl. Ocean Res. 17(3), 185–204 (1995)

    Article  Google Scholar 

  14. Lei, Y., Fu, R.: Heteroclinic chaos in a josephson-junction system perturbed by dichotomous noise excitation. EPL Europhys. Lett. 112(6), 60005 (2016)

    Article  MathSciNet  Google Scholar 

  15. Sivathanu, Y.R., Hagwood, C., Simiu, E.: Exits in multistable systems excited by coin-toss square-wave dichotomous noise: a chaotic dynamics approach. Phys. Rev. E 52(5), 4669 (1995)

    Article  Google Scholar 

  16. Liu, W., Zhu, W., Huang, Z.: Effect of bounded noise on chaotic motion of duffing oscillator under parametric excitation. Chaos Solitons Fractals 12(3), 527–537 (2001)

    Article  MATH  Google Scholar 

  17. Song, J.: The harmonic signal dominant frequency change on the behavior of chaotic ocillator dynamics in non-gaussian color noise. J. Am. Chem. Soc. 116(6), 2235–2242 (2010)

    Google Scholar 

  18. Gan, C., Wang, Y., Yang, S., Lei, H.: Noisy chaos in a quasi-integrable hamiltonian system with two dof under harmonic and bounded noise excitations. Int. J. Bifurc. Chaos 22(05), 1250117 (2012)

    Article  MATH  Google Scholar 

  19. Gan, C.: Noise-induced chaos and basin erosion in softening duffing oscillator. Chaos Solitons Fractals 25(5), 1069–1081 (2005)

    Article  MATH  Google Scholar 

  20. Gan, C.: Noise-induced chaos in a quadratically nonlinear oscillator. Chaos Solitons Fractals 30(4), 920–929 (2006)

    Article  Google Scholar 

  21. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70(1), 223 (1998)

    Article  Google Scholar 

  22. Lindner, B., Garcıa-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)

    Article  Google Scholar 

  23. Maritan, A., Banavar, J.R.: Chaos, noise, and synchronization. Phys. Rev. Lett. 72(10), 1451 (1994)

    Article  Google Scholar 

  24. Pikovsky, A.S.: Comment on chaos, noise, and synchronization. Phy. Rev. Lett. 73(21), 2931 (1994)

    Article  Google Scholar 

  25. Sánchez, E., Matías, M.A., Pérez-Muñuzuri, V.: Analysis of synchronization of chaotic systems by noise: an experimental study. Phys. Rev. E 56(4), 4068 (1997)

    Article  Google Scholar 

  26. Lai, C.H., Zhou, C.: Synchronization of chaotic maps by symmetric common noise. EPL Europhys. Lett. 43(4), 376 (1998)

    Article  Google Scholar 

  27. Lorenzo, M.N., Pérez-Muñuzuri, V.: Colored-noise-induced chaotic array synchronization. Phys. Rev. E 60(3), 2779 (1999)

    Article  Google Scholar 

  28. Wang, Y., Lai, Y.C., Zheng, Z.: Onset of colored-noise-induced synchronization in chaotic systems. Phys. Rev. E 79(5), 056210 (2009)

    Article  Google Scholar 

  29. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest lyapunov exponents from small data sets. Physica D 65(1–2), 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cveticanin, L., Zukovic, M.: Melnikov’s criteria and chaos in systems with fractional order deflection. J. Sound Vib. 326(3), 768–779 (2009)

    Article  Google Scholar 

  31. Russell, D., Rossing, T.: Testing the nonlinearity of piano hammers using residual shock spectra. Acta Acust. United Acust. 84(5), 967–975 (1998)

    Google Scholar 

  32. Cortopassi, C., Englander, O.: Nonlinear springs for increasing the maximum stable deflection of MEMS electrostatic gap closing actuators. UC Berkeley. http://www-bsac.eecs.berkeley.edu/~pister/245/project/CortopassiEnglander (2009)

  33. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296(4), 797–829 (2006)

  34. Rhoads, J.F., Shaw, S.W., Turner, K.L., Baskaran, R.: Tunable microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127(5), 423–430 (2005)

    Article  Google Scholar 

  35. Van den Broeck, C., Parrondo, J.M.R., Toral, R.: Noise-induced nonequilibrium phase transition. Phys. Rev. Lett. 73(25), 3395 (1994)

    Article  Google Scholar 

  36. Mangioni, S., Deza, R., Wio, H.S., Toral, R.: Disordering effects of color in nonequilibrium phase transitions induced by multiplicative noise. Phys. Rev. Lett. 79(13), 2389 (1997)

    Article  Google Scholar 

  37. Honeycutt, R.L.: Stochastic runge-kutta algorithms. ii. colored noise. Phys. Rev. A 45(2), 604 (1992)

    Article  Google Scholar 

  38. Bao, J.D., Abe, Y., Zhuo, Y.Z.: An integral algorithm for numerical integration of one-dimensional additive colored noise problems. J. Stat. Phys. 90(3–4), 1037–1045 (1998)

    Article  MATH  Google Scholar 

  39. Tory, E.M., Bargieł, M., Honeycutt, R.L.: A three-parameter markov model for sedimentation iii. a stochastic Runge–Kutta method for computing first-passage times. Powder Technol. 80(2), 133–146 (1994)

    Article  Google Scholar 

  40. Frey, M., Simiu, E.: Noise-induced chaos and phase space flux. Physica D 63(3), 321–340 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lin, H., Yim, S.C.S.: Analysis of a nonlinear system exhibiting chaotic, noisy chaotic, and random behaviors. J. Appl. Mech. 63(2), 509–516 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and the anonymous reviewers for their professional suggestions. The work is supported by the National Natural Science Foundation of China (Grant Nos. 11672231 and 11672233), the NSF of Shaanxi Province (Grant No. 2016JM1010), and the Seed Foundation of Innovation and Creation for Graduate Students at the Northwestern Polytechnical University, China (Grant No. Z2017187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youming Lei.

Appendix

Appendix

Here, we will clarify the proposed second-order stochastic Runge–Kutta algorithm for integrating the differential equations under green noise. The basic idea of the algorithm is similar to that in [37] where white or red noise is treated.

We start with formally integrating Eq. (7) from time 0 to time \(\Delta t\) :

$$\begin{aligned} z(\Delta t)= & {} {z_0} + \int _0^{\Delta t} {f(z(t'))} dt' + \int _0^{\Delta t} {\xi (t')} dt' \nonumber \\&- \int _0^{\Delta t} {\eta (t')} dt',\nonumber \\ \xi (\Delta t)= & {} {\xi _0} + \int _0^{\Delta t} {( - \gamma \xi (t'))} dt' + \int _0^{\Delta t} {\gamma \eta (t')} dt'.\nonumber \\ \end{aligned}$$
(26)

Defining

$$\begin{aligned} {\varGamma _0}(t)\equiv & {} \int _0^{t} {\eta (t')} dt',\\ {\varGamma _i}(t)\equiv & {} \int _0^{t} {{\varGamma _{i - 1}}(t')} dt',i = 1,2, \ldots , \end{aligned}$$

and using the identity [37]

$$\begin{aligned} < {\varGamma _m}(t){\varGamma _n}(t) > = {D^2}\frac{{{t^{m + n + 1}}}}{{m!n!(m + n + 1)}}, \end{aligned}$$

we can expand Eq. (26) about \({z_0}\) to \({(\Delta t)^2}\) . Then, we have

$$\begin{aligned} z(\Delta t)= & {} {z_0} + {f_0}\Delta t + \frac{1}{2}{f_0}{f'_0}{(\Delta t)^2} + \frac{1}{2}{\xi _0}{f'_0}{(\Delta t)^2}\\&+\, {\xi _0}\Delta t - \frac{1}{2}\gamma {\xi _0}{(\Delta t)^2} + {S_z},\\ \xi (\Delta t)= & {} {\xi _0} - \gamma {\xi _0}\Delta t + \frac{1}{2}{\gamma ^2}{\xi _0}{(\Delta t)^2} + {S_\xi }, \end{aligned}$$

in which \({f_0} = f({z_0})\), and

$$\begin{aligned} {S_z}= & {} - {\varGamma _0}(\Delta t) + \frac{1}{2}{f''_0}\int _0^{\Delta t} {dt'} \varGamma _0^2(t') \\&+\, \gamma {\varGamma _1}(\Delta t) - {f'_0}{\varGamma _1}(\Delta t),\\ {S_\xi }= & {} \gamma {\varGamma _0}(\Delta t) - {\gamma ^2}{\varGamma _1}(\Delta t). \end{aligned}$$

Then, we get the mean and variance of \({S_z}\) and \({S_\xi }\) to the order of \({(\Delta t)^2}\) :

$$\begin{aligned}< {S_z}>= & {} \frac{{{D^2}}}{4}{f''_0}{(\Delta t)^2},\nonumber \\< S_z^2>= & {} {D^2}\Delta t - {D^2}\gamma {(\Delta t)^2} + {D^2}{f'_0}{(\Delta t)^2},\nonumber \\< {S_\xi }>= & {} 0,\nonumber \\ < S_\xi ^2 >= & {} {D^2}{\gamma ^2}\Delta t - {D^2}{\gamma ^3}{(\Delta t)^2}. \end{aligned}$$
(27)

Parallelly, starting directly from Eq. (7) by using a second-order Runge–Kutta algorithm, we have

$$\begin{aligned} z(\Delta t)= & {} {z_0} + \frac{1}{2}({F_1} + {F_2})\Delta t - D\sqrt{\Delta t} {\phi _0},\nonumber \\ \xi (\Delta t)= & {} {\xi _0} + \frac{1}{2}({H_1} + {H_2})\Delta t + D\gamma \sqrt{\Delta t} {\phi _0}, \end{aligned}$$
(28)

in which

$$\begin{aligned} {H_1}= & {} - \gamma \left( {\xi _0} + D\gamma \sqrt{\Delta t} {\phi _1}\right) ,\\ {H_2}= & {} - \gamma \left( {\xi _0} + \Delta t{H_1} + D\gamma \sqrt{\Delta t} {\phi _2}\right) ,\\ {F_1}= & {} f\left( {z_0} - D\sqrt{\Delta t} {\phi _1}\right) + {\xi _0} + D\gamma \sqrt{\Delta t} {\phi _1},\\ {F_2}= & {} f\left( {z_0} + \Delta t{F_1} - D\sqrt{\Delta t} {\phi _2}\right) + {\xi _0} + \Delta t{H_1} \\&+\,D\gamma \sqrt{\Delta t} {\phi _2}, \end{aligned}$$

and \({\phi _0}\), \({\phi _1}\), and \({\phi _2}\) are three independent standard Gaussian random numbers, each of which has zero mean and unit variance. Expanding Eq. (28) about \({z_0}\) to order \({(\Delta t)^2}\), we obtain

$$\begin{aligned} z(\Delta t)= & {} {z_0} + {f_0}\Delta t + \frac{1}{2}{f_0}{f'_0}{(\Delta t)^2} + \frac{1}{2}{f'_0}{\xi _0}{(\Delta t)^2}\\&+ {\xi _0}\Delta t - \frac{1}{2}\gamma {\xi _0}{(\Delta t)^2} + {S'_z},\\ \xi (\Delta t)= & {} {\xi _0} - \gamma {\xi _0}\Delta t + \frac{1}{2}{\gamma ^2}{\xi _0}{(\Delta t)^2} + {S'_\xi }, \end{aligned}$$

where

$$\begin{aligned} {S'_z}= & {} - D\sqrt{\Delta t} {\phi _0} - \frac{1}{2}D({f'_0} - \gamma ){(\sqrt{\Delta t} )^3}{\phi _1} \\&+\frac{{{D^2}}}{4}{f''_0}{(\Delta t)^2}\phi _1^2 \\&- \frac{1}{2}D({f'_0} - \gamma ){(\sqrt{\Delta t} )^3}{\phi _2} + \frac{{{D^2}}}{4}{f''_0}{(\Delta t)^2}\phi _2^2,\\ {S'_\xi }= & {} D\gamma \sqrt{\Delta t} {\phi _0} - \frac{1}{2}D{\gamma ^2}{(\sqrt{\Delta t} )^3}{\phi _1} \\&- \frac{1}{2}D{\gamma ^2}{(\sqrt{\Delta t} )^3}{\phi _2}. \end{aligned}$$

The means and the variances of \({S'_z}\) and \({S'_\xi }\) are calculated to be

$$\begin{aligned}< {S'_z}>= & {} \frac{{{D^2}}}{4}{f''_0}{(\Delta t)^2}< \phi _1^2> \nonumber \\&+ \frac{{{D^2}}}{4}{f''_0}{(\Delta t)^2}< \phi _2^2> ,\nonumber \\< {S_z'^2}>= & {} {D^2}\Delta t< \phi _0^2> \nonumber \\&+ {D^2}({f'_0} - \gamma ){(\Delta t)^2}< {\phi _0}({\phi _1} + {\phi _2})> ,\nonumber \\< {S'_\xi }>= & {} 0,\nonumber \\< {S_\xi '^2}>= & {} {D^2}{\gamma ^2}\Delta t< \phi _0^2> \nonumber \\&- {D^2}{\gamma ^3}{(\Delta t)^2} < {\phi _0}({\phi _1} + {\phi _2}) > . \end{aligned}$$
(29)

Equating Eqs. (27)–(29) leads to

$$\begin{aligned}&< \phi _0^2> = 1,\\&< \phi _1^2> +< \phi _2^2> = 1,\\&< {\phi _0}({\phi _1} + {\phi _2}) > = 1. \end{aligned}$$

Due to the reason that there are three equations and three unknowns, it is possible for us to define a standard Gaussian random number \(\psi \) so that \({\phi _i} = {a_i}\psi ,i = 0,1,2\). To maintain the structure, we can conveniently choose \({a_0} = {a_2} = 1\) and \({a_1} = 0\). Then, these considerations lead to the second-order stochastic Runge–Kutta algorithm as represented by Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Y., Hua, M. & Du, L. Onset of colored-noise-induced chaos in the generalized Duffing system. Nonlinear Dyn 89, 1371–1383 (2017). https://doi.org/10.1007/s11071-017-3522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3522-1

Keywords

Navigation