Skip to main content
Log in

Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an inhomogeneous discrete nonlinear Schrödinger equation is analytically investigated. The modulation instability condition and conservation laws are derived. By virtue of the discrete Darboux transformation, two types of explicit solutions on the vanishing and non-vanishing backgrounds are generated. Those results might be useful in the study of solitons propagation in discrete optical fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasegawa, A., Kodama, Y.: Solitons in optical communications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  2. Ablowitz, M.J.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Agrawal, G.P.: Nonlinear fiber optics. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  4. Biswas, A., Khalique, C.M.: Stationary solutions for nonlinear dispersive Schrödinger’s equation. Nonlinear Dyn. 63, 623–626 (2011)

    Article  Google Scholar 

  5. Kohl, R., Biswas, A., Milovic, D., Zerrad, E.: Optical soliton perturbation in a non-Kerr law media. Opt. Laser Tech. 40, 647–655 (2008)

    Article  Google Scholar 

  6. Ghodrat, E., Anjan, B.: The G’/G method and 1-soliton solution of Davey–Stewartson equation. Math. Comp. Model. 53(5–6), 694–698 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Ghodrat, E., Krishnan, E.V., Manel, L., Essaid, Z., Anjan, B.: Analytical and numerical solutions for Davey–Stewartson equation with power lawnonlinearity. Waves Rand. Comp. Med. 21(4), 559–590 (2011)

    Article  MATH  Google Scholar 

  8. Hossein, J., Atefe, S., Yahya, T., Anjan, B.: The first integral method and traveling wave solutions to Davey–Stewartson equation. Nonlinear Anal. Model. Contr. 17(2), 182–193 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, A.: Optical solitons in DWDM system with spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)

    Article  Google Scholar 

  11. Zhou, Q., Zhu, Q.P., Savescu, M., Bhrawy, A., Biswas, A.: Optical solitons with nonlinear dispersion in parabolic law medium. Proc. Romanian Acad. Ser. A 16, 152–159 (2015)

    MathSciNet  Google Scholar 

  12. Zhou, Q., Zhu, Q.P., Liu, Y.X., Yu, H., Wei, C., Yao, P., Bhrawy, A., Biswas, A.: Bright, dark and singular optical solitons in cascaded system. Laser Phys. 25, 025402 (2015)

    Article  Google Scholar 

  13. Zhou, Q., Yao, D., Chen, F.: Analytical study of optical solitons in media with Kerr and parabolic law nonlinearities. J. Mod. Opt. 60, 1652C1657 (2013)

    Google Scholar 

  14. Zhou, Q., Yao, D., Chen, F., Li, W.: Optical solitons in gasfilled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. J. Mod. Opt. 60, 854–859 (2013)

    Article  MATH  Google Scholar 

  15. Mirzazadeh, M., Arnous, A.H., Mahmood, M.F., Zerrad, E., Biswas, A.: Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coeffcients by trial solution approach. Nonlinear Dyn. 81, 277–282 (2015)

    Article  MATH  Google Scholar 

  16. Tu, J.M., Tian, S.F., Xu, M.J., Song, X.Q., Zhang, T.T.: Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles. Nonlinear Dyn. 83, 1199–1215 (2016)

    Article  MATH  Google Scholar 

  17. Tian, S.F., Zhou, S.W., Jiang, W.Y., Zhang, H.Q.: Analytic solutions, Darboux transformation operators and supersymmetry for a generalized one-dimensional time-dependent Schrödinger equation. Appl. Math. Comput. 218, 7308–7321 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Liu, W.J., Pan, N., Huang, L.G., Lei, M.: Soliton interactions for coupled nonlinear Schrödinger equations with symbolic computation. Nonlinear Dyn. 78, 755–770 (2014)

    Article  Google Scholar 

  19. Liu, W.J., Huang, L.G., Li, Y.Q., Pan, N., Lei, M.: Interactions of dromion-like structures in the (1+1) dimension variable coefficient nonlinear Schrödinger equation. Appl. Math. Lett. 39, 91–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Qi, F.H., Xu, X.G., Wang, P.: Rogue wave solutions for the coupled cubic-quintic nonlinear Schrödinger equations with variable coefficients. Appl. Math. Lett. 54, 60–65 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qi, F.H., Ju, H.M., Meng, X.H., Li, J.: Conservation laws and Darboux transformation for the coupled cubic–quintic nonlinear Schrodinger equations with variable coefficients in nonlinear optics. Nonlinear Dyn. 77, 1331–1337 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, H.H., Zhao, X.J., Hao, Q.: Breather-to-soliton conversions and nonlinear wave interactions in a coupled Hirota system. Appl. Math. Lett. 61, 8–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221–1230 (2015)

    Article  MathSciNet  Google Scholar 

  24. Guo, R., Zhao, H.H., Wang, Y.: A higher-order coupled nonlinear Schrödinger system: solitons, breathers, and rogue wave solutions. Nonlinear Dyn. 83, 2475–2484 (2016)

    Article  MATH  Google Scholar 

  25. Li, L., Li, Z.H., Li, S.Q., Zhou, G.S.: Modulation instability and solitons on a cw background in inhomogeneous optical fiber media. Opt. Commun. 234, 169–176 (2004)

    Article  Google Scholar 

  26. Kevrekidis, P.G.: The discrete nonlinear Schrödinger equation: mathematical analysis. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  27. Toda, M.: Theory of nonlinear lattices. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  28. Konotop, V.V., Chubykalo, O.A., Vázquez, L.: Dynamics and interaction of solitons on an integrable inhomogeneous lattice. Phys. Rev. E 48, 563–568 (1993)

    Article  Google Scholar 

  29. Scharf, R., Bishop, A.R.: Properties of the nonlinear Schrödinger equation on a lattice. Phys. Rev. A 43, 6535–6544 (1991)

    Article  MathSciNet  Google Scholar 

  30. Ankiewicz, A., Akhmediev, N., Soto-Crespo, J.M.: Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Phys. Rev. E 82, 026602 (2010)

    Article  MathSciNet  Google Scholar 

  31. Qin, Z.Y.: A generalized AblowitzCLadik hierarchy, multi-Hamiltonian structure and Darboux transformation. J. Math. Phys. 49, 063505 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohamadou, A., Lantchio Tiofack, C.G., Kofané, T.C.: Stability analysis of plane wave solutions of the generalized AblowitzCLadik system. Phys. Scr. 74, 718–725 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kamchatnov, A.M.: Nonlinear periodic waves and their modulations. World Science Press, Hong Kong (2000)

  34. Wright, O.C.: Homoclinic connections of unstable plane waves of the long wave short wave equations. Stud. Appl. Math. 117, 71–93 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Murali, R., Porsezian, K., Kofané, T.C., Mohamadou, A.: Modulational instability and exact solutions of the discrete cubicCquintic GinzburgCLandau equation. J. Phys. A Math. Theor. 43, 165001 (2010)

    Article  MATH  Google Scholar 

  36. Ji, J., Zhang, D.J., Zhang, J.J.: Conservation laws of a discrete soliton. Commun. Theory Phys. 49, 1105–1108 (2008)

    Article  MathSciNet  Google Scholar 

  37. Abdul, H.K., Houria, T., Anjan, B.: Conservation laws of the Bretherton equation. Appl. Math. Inf. Sci. 7(3), 877–879 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to each member of our discussion group for their suggestions. This work has been supported by the Special Funds of the National Natural Science Foundation of China under Grant No. 11347165 and 61405137, by the Shanxi Province Science Foundation for Youths under Grant Nos. 2015021008 and 2014011005-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Qin Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, HQ., Guo, R. & Zhang, JW. Modulation instability, conservation laws and soliton solutions for an inhomogeneous discrete nonlinear Schrödinger equation. Nonlinear Dyn 88, 1615–1622 (2017). https://doi.org/10.1007/s11071-017-3333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3333-4

Keywords

Navigation