Skip to main content
Log in

Pattern dynamics of a Gierer–Meinhardt model with spatial effects

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Interactions of activator and inhibitor can be widely applied in different fields. As a result, dynamical behaviors of an activator–inhibitor model with different sources are investigated. We obtained the condition of Turing bifurcation by using linear stability analysis, and the amplitude equation by employing multiple scale analysis. Moreover, the stability of amplitude equation was presented. It turned out that the model can show spot patterns, stripe patterns and the coexistence of spot and stripe patterns. Numerical simulations well validate our theoretical analysis. Our results highlight the relationship between pattern formation and variation of biological tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rietkerk, M., Koppel, J.V.D.: Regular pattern formation in real ecosystems: trends. Ecol. Evol. 23, 169–175 (2007)

    Article  Google Scholar 

  2. Garfinkel, A., et al.: Pattern formation by vascular mesenchymal cells. Proc. Natl. Acad. Sci. 101, 9247–9250 (2004)

    Article  Google Scholar 

  3. Sun, G.-Q., et al.: Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. Sci. Rep. 5, 11246 (2015)

    Article  Google Scholar 

  4. Sun, G.-Q., Wu, Z.-Y., Wang, Z., Jin, Z.: Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear Dyn. 83, 811–819 (2016)

    Article  MathSciNet  Google Scholar 

  5. Li, L., Jin, Z.: Pattern dynamics of a spatial predator–prey model with noise. Nonlinear Dyn. 67, 1737–1744 (2012)

    Article  MathSciNet  Google Scholar 

  6. Wu, Y.-P., Feng, G.-L., Li, B.-L.: Interactions of multiple atmospheric circulation drive the drought in Tarim River Basin. Sci. Rep. 6, 26470 (2016)

    Article  Google Scholar 

  7. Wu, Y.-P., Feng, G.-L.: A new algorithm for seasonal precipitation forecast based on global atmospheric hydrological water budget. Appl. Math. Comput. 268, 478–488 (2015)

    MathSciNet  Google Scholar 

  8. Feng, G.-L., Wu, Y.-P.: Signal of acceleration and physical mechanism of water cycle in Xinjiang, China. PLoS ONE 11, e0167387 (2016)

    Article  Google Scholar 

  9. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  MATH  Google Scholar 

  10. Meinhardt, H.: The algorithmic beauty of sea shells. Virtual Lab. 196, S1C-23-6 (2009)

  11. Yari, M.: Transitions and heteroclinic cycles in the general Gierer–Meinhardt equation and cardiovascular calcification model. Nonlinear Anal. 73, 1160–1174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yochelis, A., et al.: The formation of labyrinths, spots and stripe patterns in a biochemical approach to cardiovascular calcification. New J. Phys. 10, 055002 (2008)

    Article  Google Scholar 

  13. Yochelis, A., Garfinkel, A.: Front motion and localized states in an asymmetric bistable activator–inhibitor system with saturation. Phys. Rev. E 77, 035204 (2008)

    Article  Google Scholar 

  14. Danino, T., et al.: In-silico patterning of vascular mesenchymal cells in three dimensions. Plos ONE 6, e20182 (2011)

    Article  Google Scholar 

  15. Haken, H., Olbrich, H.: Analytical treatment of pattern formation in the Gierer–Meinhardt model of morphogenesis. J. Math. Biol. 6, 317–331 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kazuaki, T., Ekkehard, M.: Wavelength selection mechanism in the Gierer–Meinhardt model. Bull. Math. Biol. 51, 207–216 (1989)

    Article  MATH  Google Scholar 

  17. Takashi, M., Maini, P.K.: Speed of pattern appearance in reaction–diffusion models: implications in the pattern formation of limb bud mesenchyme cells. Bull. Math. Biol. 66, 627–649 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gonpot, P., Collet, J.S.A.J., Sookia, N.U.H.: Gierer–Meinhardt model: bifurcation analysis and pattern formation. Trends Appl. Sci. Res. 3, 115–128 (2008)

    Article  Google Scholar 

  19. Nayfeh, A.H., et al.: Perturbation methods in nonlinear dynamics-applications to machining dynamics. J. Manuf. Sci. Eng. 119, 485–493 (1997)

    Article  Google Scholar 

  20. Ouyang, Q.: Patterns formation in reaction diffusion systems. Shanghai Sci-Tech. Education Publishing House, Shanghai (2000)

    Google Scholar 

  21. Yang, G., Xu, J.: Analysis of spatiotemporal patterns in a single species reaction–diffusion model with spatiotemporal delay. Nonlinear Anal.: RWA 22, 54–65 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, G.-Q.: Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  23. Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 77, 31–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, T.-H., et al.: Spatio-temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78, 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  25. Sun, G.-Q., et al.: Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73, 2207–2219 (2013)

    Article  MathSciNet  Google Scholar 

  26. Zhang, X.-C., Sun, G.-Q., Jin, Z.: Spatial dynamics in a predator–prey model with Beddington–DeAngelis functional response. Phys. Rev. E 85, 021924 (2012)

    Article  Google Scholar 

  27. Mercker, M., et al.: Beyond Turing: mechanochemical pattern formation in biological tissues. Biol. Direct 11, 1–15 (2016)

    Article  Google Scholar 

  28. Anna, K., et al.: Developmental pattern formation in phases. Trends Cell Biol. 25, 579–591 (2015)

    Article  Google Scholar 

  29. Sun, G.-Q., Jusup, M., Jin, Z., Wang, Y., Wang, Z.: Pattern transitions in spatial epidemics: mechanisms and emergent properties. Phys. Life Rev. 19, 43–73 (2016)

  30. Li, L., Jin, Z., Li, J.: Periodic solutions in a herbivore-plant system with time delay and spatial diffusion. Appl. Math. Modell. 40, 4765–4777 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z., Zhao, D.-W., Wang, L., Sun, G.-Q., Jin, Z.: Immunity of multiplex networks via acquaintance vaccination. EPL 112, 48002 (2015)

    Article  Google Scholar 

  32. Sun, G.-Q., Zhang, J., Song, L.-P., Jin, Z., Li, B.-L.: Pattern formation of a spatial predator–prey system. Appl. Math. Comput. 218, 11151–11162 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator–prey systems: strong interaction case. J. Differ. Equ. 247, 866–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lieberman, G.M.: Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions. SIAM J. Math. Anal. 36, 1400–1406 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Song, X., Wang, C., Ma, J., Ren, G.: Collapse of ordered spatial pattern in neuronal network. Phys. A 451, 95–112 (2016)

    Article  MathSciNet  Google Scholar 

  36. Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497–509 (2016)

    Article  MathSciNet  Google Scholar 

  37. Ma, J., Xu, Y., Wang, C., Jin, W.: Pattern selection and self-organization induced by random boundary initial values in a neuronal network. Phys. A 461, 586–594 (2016)

    Article  MathSciNet  Google Scholar 

  38. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  39. Ma, J., Liu, Q., Ying, H., Wu, Y.: Emergence of spiral wave induced by defects block. Commun. Nonlinear Sci. Numer. Simul. 18, 1665–1675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multiscroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

    Article  Google Scholar 

  41. Ma, J., Wang, C.N., Jin, W.Y., Wu, Y.: Transition from spiral wave to target wave and other coherent structures in the networks of Hodgkin–Huxley neurons. Appl. Math. Comput. 217, 3844–3852 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Liu, T.-B., Ma, J., Zhao, Q., Tang, J.: Force exerted on the spiral tip by the heterogeneity in an excitablemedium. EPL 104, 58005 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The project is funded by the National Natural Science Foundation of China under Grants (11501338, 11671241 and 11301490), 131 Talents of Shanxi University, Program for the Outstanding Innovative Teams (OIT) of Higher Learning Institutions of Shanxi, and Natural Science Foundation of Shanxi Province Grant No. 201601D021002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Yan Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, GQ., Wang, CH. & Wu, ZY. Pattern dynamics of a Gierer–Meinhardt model with spatial effects. Nonlinear Dyn 88, 1385–1396 (2017). https://doi.org/10.1007/s11071-016-3317-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3317-9

Keywords

Navigation