Skip to main content
Log in

Soliton solutions and traveling wave solutions for a discrete electrical lattice with nonlinear dispersion through the generalized Riccati equation mapping method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, through the generalized Riccati equation mapping method, we investigate soliton solutions in the upper and lower forbidden band gab of the Salerno equation describing nonlinear discrete electrical lattice. As a result, we obtain various hyperbolic and trigonometric functions solutions and for some appropriated parameters we obtain exact solutions including kink, antikink, breathers, and dark and bright solitons. The obtained solutions are useful for the signal transmission through the electrical lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sekulic, D.L., Satoric, M.V., Zivanov, M.B., Bajic, J.S.: Soliton-like pulses along electrical nonlinear transmission line. Elecron. Electr. Eng. 121, 53–58 (2012)

    Google Scholar 

  2. Motcheyo, A.B.T., Tchawoua, C., Siewe, S.M., Tchinang, Tchameu, J.D.: Supratransmission phenomenon in a discrete electrcal lattice with nonlineardispersion. Commun. Nonlinear Sci. Numer. Simul. 18, 946–952 (2013)

    Article  MathSciNet  Google Scholar 

  3. David, Y., Fabien, K.: Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line. Phys. Lett. A 373, 3801–3809 (2009)

    Article  MATH  Google Scholar 

  4. Fabien, K., Guy, B.N., David, Y., Anaclet, F.: Nonlinear supratransmission in a discrete nonlinear electrical. Chaos Solitons Fract. 75, 263–271 (2015)

    Article  MATH  Google Scholar 

  5. Motcheyo, A.B.T., Tchawoua, C., Tchameu, J.D.T.: Supratransmission induced by waves collisions in a discrete electrical lattice. Phys. Rev. E 88, 040901 (2013)

    Article  Google Scholar 

  6. Ming, S., Jionghui, C.: Solitary wave solutions and kink wave solutions for a generalized Zakharov–Kuznetsov equation. Appl. Math. Comput. 217, 1455–1462 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Houria, T., El Akrmi, A., Rabia, M.K.: Soliton solutions in three linearly coupled Kortewegde Vries equations. Opt. Commun. 201, 447–455 (2002)

    Article  Google Scholar 

  8. Guy, R.K., Paul, W.: Exact solutions for a system of two coupled discrete nonlinear Schrodinger equations with a saturable nonlinearity. Appl. Math. Comput. 219, 5659–5962 (2013)

    MathSciNet  Google Scholar 

  9. Aiyong, C., Jibin, L., Xijun, D., Wantao, H.: Travelling wave solutions of the Fornberg–Whitham equation. Appl. Math. Comput. 2009(215), 3068–3075 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Hirota, R., Suzuki, K.: Theoretical and experimental studies of solitons in nonlinear lumped networks. Proc. IEEE. 61, 1483–1491 (1973)

    Article  Google Scholar 

  11. Nagashima, H., Amagishi, Y.: Experiment on the Toda lattice using nonlinear transmission lines. J. Phys. Soc. Jpn. 45, 680–688 (1978)

    Article  Google Scholar 

  12. Mostafa, S.I.: Analytical study for the ability of nonlinear transmission lines to generate solitons. Chaos Solitons Fract. 39, 2125–2133 (2009)

    Article  Google Scholar 

  13. Saïdou, A., Alidou, M., Ousmanou, D., Serge, Y.D.: Exact solutions of the nonlinear differential difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G/G)- expansion method. Chin. Phys. B 23, 1205–1206 (2014)

    Google Scholar 

  14. Serge, Y.D.: Propagation of dark solitary waves in the Korteveg–Devries– Burgers equation describing the nonlinear RLC transmission. J. Mod. Phys. 5, 394–401 (2014)

    Article  Google Scholar 

  15. Ehsan, A., Ali, H.: Nonlinear transmission lines for pulse shaping in silicon. IEEE J. Solid State circuits 40, 744–752 (2005)

    Article  Google Scholar 

  16. Franois, B.P., Timeleon, C.K., Nikolas, F., Michel, R.: Wave modulations in the nonlinear biinductance transmission line. J. Phys. Soc. Jpn. 70, 2568–2577 (2001)

    Article  Google Scholar 

  17. David, Y., Fabien, K.: Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line. Phys. Lett. 373, 3801–3809 (2008)

    MATH  Google Scholar 

  18. Kazuhiro, F., Miki, W., Yoshimasa, N.: Envelope soliton in a new nonlinear transmission line. J. Phys. Jpn. 49, 1593–1597 (1980)

    Article  Google Scholar 

  19. Patrick, M., Bilbault, J.M., Remoissenet, M.: Observation of nonlinear localized modes in an electrical lattice. Phys. Rev. E 5, 6127–6133 (1995)

    Google Scholar 

  20. Sirendaoreji: Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos Solitons Fract. 31, 943–950, (2007)

  21. Hassan, A., Zedan, Shatha J.M.: The sine–cosine method for Davey–Stewartson equations. Appl. Math. 10, 103–117 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Anjan, B., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoullis equation approach. Nonlinear Dyn. 81(4), 1933–1949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yusufoglu, E., Bekir, A.: On the extended tanh method applications nonlinear equations. Int. J. Nonlinear Sci. 4, 10–16 (2007)

    MathSciNet  Google Scholar 

  24. Ismail, A., Turgut, O.: Analytic study on two nonlinear evolution equations by using the (G/G)-expansion method. Appl. Math. Comput. 209, 425–429 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Hai-Ling, L., Xi-Qiang, L., Lei, N.: A generalized (G/G)-expansion method and its applications to nonlinear evolution equations. Appl. Math. Comput. 215, 3811–3816 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Ismail, A.: Exact and explicit solutions to some nonlinear evolution equations by utilizing the (G/G)-expansion method. Appl. Math. Comput. 215, 857–863 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Wang, M., Zhang, J., Li, X.: Application of the (G/G)-expansion to travelling wave solutions of the BroerKaup and the approximate long water wave equations. Appl. Math. Comput. 206, 321–326 (2008)

    MathSciNet  Google Scholar 

  28. Zayed, E.M.E., Arnous, A.H.: DNA dynamics studied using the homogeneous balance method. Chin. Phys. Lett. 29, 0802–0803 (2012)

    Google Scholar 

  29. Kudryashov, Nikolay A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eslami, M., Vajargah, B.F., Mirzazadeh, M., Anjan, B.: Application of first integral method to fractional partial differential equations. Ind. J. Phys. 88, 177–184 (2014)

    Article  Google Scholar 

  31. Morris, R.M., Kara, A.H., Anjan, B.: An analysis of the Zhiber-Shabat equation including Lie point symmetries and conservation laws. Collect. Math. 67, 55–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Polina, R., Kara, A.H., Anjan, B.: Additional conservation laws for Rosenau–KdV–RLW equation with power law nonlinearity by Lie symmetry. Nonlinear Dyn. 79, 743–748 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shun-don, Z.: The generalizing Riccati equation mapping method in non-linear evolution equation: application to (2+1)-dimensionalBoiti-Leon-Pempinelle equation. Chaos Solitons Fract. 37, 1335–1342 (2008)

    Article  MATH  Google Scholar 

  34. Zheng, C.L.: Comment on the generalizing Riccati equation mapping method in nonlinear evolution equation: application to (2+1)-dimensional-Boiti-Leon- Pempinelle equation. Chaos Solitons Fract. 39, 1493–1495 (2009)

    Article  MATH  Google Scholar 

  35. Boudoue, H.M., Gambo, B., Serge, Y.D., Timoleon, C.K.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171–177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qin, Z., Lan, L., Huijuan, Z., Mirzazadeh, M., Alih, B., Essaid, Z., Seithuti, M., Anjan, B.: Dark and singular optical solitons with competing nonlocal nonlinearities. Opt. Appl. 46, 79–86 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakada Salathiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salathiel, Y., Amadou, Y., Betchewe, G. et al. Soliton solutions and traveling wave solutions for a discrete electrical lattice with nonlinear dispersion through the generalized Riccati equation mapping method. Nonlinear Dyn 87, 2435–2443 (2017). https://doi.org/10.1007/s11071-016-3201-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3201-7

Keywords

Navigation