Skip to main content
Log in

Dynamic response analysis and chaos identification of 4-UPS-UPU flexible spatial parallel mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In order to realize the dynamic response analysis and the chaos identification of flexible spatial parallel mechanism, the nonlinear elastic dynamics model of 4-UPS-UPU flexible parallel mechanism is established under the ideal situation, and the dynamic response, phase diagrams, Poincare map and largest Lyapunov exponent of the spatial parallel mechanism are investigated. Based on the finite element method, the driving limbs of spatial parallel mechanism are divided into elements. The kinetic energy equation and potential energy equation of units are built. Then the nonlinear elastic dynamics model of 4-UPS-UPU parallel mechanism is acquired by Lagrange equation. The dynamic response of kinematic error for 4-UPS-UPU flexible parallel mechanism is analyzed. In addition, the chaos phenomenon contained in the mechanism is identified by phase diagrams, Poincare map and largest Lyapunov exponent, respectively. Subsequently, the relationship between the basic parameters of parallel mechanism and largest Lyapunov exponent is discussed. The results indicate that there exists chaotic phenomena in the 4-UPS-UPU flexible parallel mechanism, and the basic parameters, including the material of driving limbs, diameter of driving limbs, mass of moving platform and the distribution radius of hinges of moving platform all have great effect on chaotic motion of 4-UPS-UPU flexible parallel mechanism. The researches can provide important theoretical for the further nonlinear dynamics behaviors research and optimal design of 4-UPS-UPU flexible spatial parallel mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yu, Y.Q., Du, Z.C., Yang, J.X., et al.: An experimental study on the dynamics of a 3-RRR flexible parallel robot. IEEE Trans. Robot. 27(5), 992–997 (2011)

    Article  Google Scholar 

  2. Zhang, M.H., Zhuo, B.H.: Simulink realization for dynamic simulation of diamond parallel mechanism. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 29(1), 90–94 (2010)

    Google Scholar 

  3. Zhang, Q., Mills, J.K., Cleghorn, W.L., et al.: Dynamic model and input shaping control of a flexible link parallel manipulator considering the exact boundary conditions. Robotica 33(06), 1201–1230 (2015)

    Article  Google Scholar 

  4. Renson, L., Noël, J.P., Kerschen, G.: Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn. 79(2), 1293–1309 (2015)

    Article  Google Scholar 

  5. De Paula, A.S., Savi, M.A.: Comparative analysis of chaos control methods: a mechanical system case study. Int. J. Non-Linear Mech. 46(8), 1076–1089 (2011)

    Article  Google Scholar 

  6. Vaidyanathan, S., Volos, C.K., Pham, V.T.: Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J. Eng. Sci. Technol. Rev. 8(2), 232–244 (2015)

    Google Scholar 

  7. Erbts, P., Hartmann, S., Düster, A.: A partitioned solution approach for electro-thermo-mechanical problems. Arch. Appl. Mech. 85(8), 1075–1101 (2015)

    Article  MATH  Google Scholar 

  8. Qi, G., Chen, G.: A spherical chaotic system. Nonlinear Dyn. 81(3), 1381–1392 (2015)

    Article  MathSciNet  Google Scholar 

  9. Jordehi, A.R.: Seeker optimisation (human group optimisation) algorithm with chaos. J. Exp. Theor. Artif. Intell. 27(6), 753–762 (2015)

    Article  Google Scholar 

  10. Zhang, J., Chu, Y., Li, X., et al.: Using proportional and different controller to control chaos in non-autonomous mechanical system. Int. J. Model. Identif. Control 8(1), 4–9 (2009)

    Article  Google Scholar 

  11. Wu, J., Chen, X., Wang, L., et al.: Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor. Nonlinear Dyn. 78(1), 241–250 (2014)

    Article  Google Scholar 

  12. Wang, H., Sang, L., Hu, X., et al.: Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism. Chin. J. Mech. Eng. 26(5), 881–891 (2013)

    Article  Google Scholar 

  13. Liu, J., Li, Y., Zhang, Y., et al.: Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dyn. 76(3), 1737–1751 (2014)

    Article  MathSciNet  Google Scholar 

  14. Khosravi, M.A., Taghirad, H.D.: Dynamic modeling and control of parallel robots with elastic cables: singular perturbation approach. IEEE Trans. Robot. 30(3), 694–704 (2014)

    Article  Google Scholar 

  15. Wu, J., Chen, X., Wang, L.: Design and dynamics of a novel solar tracker with parallel mechanism. IEEE/ASME Trans. Mechatron. 21(1), 88–97 (2016)

    Google Scholar 

  16. Du, J., Bao, H., Cui, C., et al.: Dynamic analysis of cable-driven parallel manipulators with time-varying cable lengths. Finite Elem. Anal. Des. 48(1), 1392–1399 (2012)

    Article  MathSciNet  Google Scholar 

  17. Li, B., Li, Y., Ge, W. et al.: Dynamics analysis of a novel over-constrained three-DOF parallel manipulator. IEEE Int. Conf. Mechatron. Autom. (2014). doi:10.1109/ICMA.2014.6885804

  18. Yang, C., Han, J., Zheng, S., et al.: Dynamic modeling and computational efficiency analysis for a spatial 6-DOF parallel motion system. Nonlinear Dyn. 67(2), 1007–1022 (2012)

    Article  MathSciNet  Google Scholar 

  19. Wu, J., Wang, L., Guan, L.: A study on the effect of structure parameters on the dynamic characteristics of a PRRRP parallel manipulator. Nonlinear Dyn. 74(1–2), 227–235 (2013)

    Article  Google Scholar 

  20. Sharifnia, M., Akbarzadeh, A.: Dynamics and vibration of a 3-PSP parallel robot with flexible moving platform. J. Vib. Control 22(4), 1095–1116 (2016)

    Article  MathSciNet  Google Scholar 

  21. Gang, F., Hong-ni, G., Yan-bin, L., Lin, Z.: Effect of crack on vibration characteristics of a spiral bevel gear transmission system. J. Vib. Shock 33(19), 129–133 (2014)

    Google Scholar 

  22. Jianwei, L.U., Jue, G.U., Qidong, W.: Influence analysis of movement pair clearance on nolinear dynamic behacior of vehicle shimmy system. Chin. J. Mech. Eng. 44(8), 169–173 (2008)

    Article  Google Scholar 

  23. Zhao, Y., Gao, F., Dong, X., et al.: Elastodynamic characteristics comparison of the 8-PSS redundant parallel manipulator and its non-redundant counterpart–the 6-PSS parallel manipulator. Mech. Mach. Theory 45(2), 291–303 (2010)

    Article  MATH  Google Scholar 

  24. Pomares, J., Perea, I., Torres, F.: Dynamic visual servoing with chaos control for redundant robots. IEEE/ASME Trans. Mechatron. 19(2), 423–431 (2014)

    Article  Google Scholar 

  25. Zhang, J.-F., XU, L.-J.: Nonlinear elastodynamics model of adjustable mechanisms. J. Sichuan Univ. Eng. Sci. Ed. 37(4), 129–133 (2005)

    Google Scholar 

  26. Liang, L., Song, H., Guo, Q.: Research on rigid-elastic coupling dynamics using Lagrange equation. J. Harbin Eng. Univ. 36(4), 456–460 (2015)

    MathSciNet  Google Scholar 

  27. Chen, X., Li, Y., Deng, Y., et al.: Kinetoelastodynamics modeling and analysis of spatial parallel mechanism. Shock Vib. 2015, 1–10 (2015). doi:10.1155/2015/938314

  28. Dan, W., Rui, F.: Design and nonlinear analysis of a 6-DOF compliant parallel manipulator with spatial beam flexure hinges. Precis. Eng. 45, 365–373 (2016)

  29. Jiang, Y., Zhu, H., Li, Z., et al.: The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration. Nonlinear Dyn. 84(1), 203–222 (2016)

    Article  Google Scholar 

  30. Xiang-ling, W., Cong-qing, W.: Adaptive attitude coordination control of formation flying satellite. J. Astronaut. 30(4), 1531–1536 (2009)

    Google Scholar 

  31. Hai-nan, Z., Shu-qian, C., Yong-lei, S.: Vibration localization of a mistuned bladed disk system with friction and gap. J. Vib. Shock 35(2), 82–90 (2016)

    Google Scholar 

  32. Cao, J., Zhou, S., Inman, D.J., et al.: Chaos in the fractionally damped broadband piezoelectric energy generator. Nonlinear Dyn. 80(4), 1705–1719 (2015)

    Article  Google Scholar 

  33. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 65(1), 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia, C., Song, P., Shi, T., et al.: Chaotic dynamics characteristic analysis for matrix converter. IEEE Trans. Ind. Electron. 60(1), 78–87 (2013)

    Article  Google Scholar 

  35. Si-hua, H., Shao-qing, Y., Ai-guo, S., et al.: Detection of ship targets on the sea surface based onLyapunov exponents of image block. Acta Physica Sinica 58(2), 794–801 (2009)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant No. 51005138), the Shandong Young Scientists Award Fund (Grant No. BS2012ZZ008), Taishan Scholarship Project of Shandong Province (No. tshw20130956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, L., Deng, Y. et al. Dynamic response analysis and chaos identification of 4-UPS-UPU flexible spatial parallel mechanism. Nonlinear Dyn 87, 2311–2324 (2017). https://doi.org/10.1007/s11071-016-3191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3191-5

Keywords

Navigation