Skip to main content
Log in

Noise-induced resonance at the subharmonic frequency in bistable systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In a bistable system excited by the combination of a weak low-frequency signal and a noise, the noise can induce a resonance at the subharmonic frequency which is smaller than the driving frequency. This kind of noise-induced resonance is similar to the well-known stochastic resonance. Here, we verify the noise-induced resonance at the subharmonic frequency which equals 1/3 multiple of the driving frequency, by a numerical study of the response of the overdamped and underdamped bistable systems, respectively. More importantly, the noise-induced resonance at the subharmonic frequency may be stronger than the classical stochastic resonance which occurs at the driving frequency. This indicates that we cannot ignore the subharmonic frequency component in the response, otherwise we may miss some important information. By adjusting the excitation signal and the system parameters, we can make the noise-induced resonance at the subharmonic frequency to be stronger or weaker than the classic stochastic resonance. The results shown in this paper constitute a complement to the stochastic dynamics of a random system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  Google Scholar 

  2. Ibrahim, R.A.: Excitation-induced stability and phase transition: a review. J. Vib. Control 12, 1093–1170 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gen. 14, L453–L457 (1981)

    Article  MathSciNet  Google Scholar 

  4. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    Article  MATH  Google Scholar 

  5. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: A theory of stochastic resonance in climatic change. SIAM J. Appl. Math. 43, 565–578 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nicolis, C., Nicolis, G.: Stochastic aspects of climatic transitions-additive fluctuations. Tellus 33, 225–234 (1981)

    Article  MathSciNet  Google Scholar 

  7. Nicolis, C.: Stochastic aspects of climatic transitionsresponse to a periodic forcing. Tellus 34, 1–9 (1982)

    Article  MathSciNet  Google Scholar 

  8. Nicolis, C.: Long-term climatic transitions and stochastic resonance. J. Stat. Phys. 70, 3–14 (1993)

    Article  MATH  Google Scholar 

  9. Moss, F.: Stochastic resonance: from ice ages to the monkey’s ear. In: Weiss, G.H. (ed.) Contemporary Problems in Statistical Physics, pp. 205–253. SIAM, Philadelphia, PA (1994)

    Chapter  Google Scholar 

  10. Moss, F., Pierson, D., O’Gorman, D.: Stochastic resonance: tutorial and update. Int. J. Bifurc. Chaos 4, 1383–1397 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefit of noise: from ice age to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  12. Misono, M., Kohmoto, T., Fukuda, Y., Kunitomo, M.: Stochastic resonance in an optical bistable system driven by colored noise. Opt. Commun. 152, 255–258 (1998)

    Article  Google Scholar 

  13. Guderian, A., Dechert, G., Zeyer, K.-P., Schneider, F.W.: Stochastic resonance in chemistry. 1. The Belousov–Zhabotinsky reaction. J. Phys. Chem. 100, 4437–4441 (1996)

    Article  Google Scholar 

  14. Förster, A., Merget, M., Schneider, F.W.: Stochastic resonance in chemistry. 2. The Peroxidase–Oxidase reaction. J. Phys. Chem. 100, 4442–4447 (1996)

    Article  Google Scholar 

  15. Hohmann, W., Müller, J., Schneider, F.W.: Stochastic resonance in chemistry. 3. The Minimal–Bromate reaction. J. Phys. Chem. 100, 5388–5392 (1996)

    Article  Google Scholar 

  16. Hänggi, P.: Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3, 285–290 (2002)

    Article  Google Scholar 

  17. McDonnell, M., Abbott, D.: What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5, e1000348 (2009)

    Article  MathSciNet  Google Scholar 

  18. Douglass, J.K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, 337–340 (1993)

    Article  Google Scholar 

  19. Mitaim, S., Kosko, B.: Adaptive stochastic resonance in noisy neurons based on mutual information. IEEE Trans. Neural Netw. 15, 1526–1650 (2004)

    Article  Google Scholar 

  20. Stacey, W.C., Durand, D.M.: Stochastic resonance improves signal detection in hippocampal CA1 neurons. J. Neurophysiol. 83, 1394–1402 (2000)

    Google Scholar 

  21. Li, Q.S., Liu, Y.: The influence of coupling on internal stochastic resonance in neural system. Chem. Phys. Lett. 416, 33–37 (2005)

    Article  Google Scholar 

  22. Rallabandi, V.P.S., Roy, P.K.: Magnetic resonance image enhancement using stochastic resonance in Fourier domain. Magn. Reson. Imaging 28, 1361–1373 (2010)

    Article  Google Scholar 

  23. Rallabandi, V.P.S.: Enhancement of ultrasound images using stochastic resonance-based wavelet transform. Comput. Med. Imaging Graph. 32, 316–320 (2008)

    Article  Google Scholar 

  24. He, Q., Kong, F., Wang, J., Liu, Y., Dai, D.: Multiscale noise tuning of stochastic resonance for enhanced fault diagnosis in rotating machines. Mech. Syst. Signal Process. 28, 443–457 (2012)

    Article  Google Scholar 

  25. Lei, Y., Han, D., Lin, J., He, Z.: Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech. Syst. Signal Process. 38, 113–124 (2013)

    Article  Google Scholar 

  26. Cao, L., Wu, D.J.: Stochastic resonance in a linear system with signal-modulated noise. Europhys. Lett. 61, 593–598 (2003)

    Article  Google Scholar 

  27. Jin, Y., Xu, W., Xu, M., Fang, T.: Stochastic resonance in linear system due to dichotomous noise modulated by bias signal. J. Phys. A 38, 3733–3742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, W., Di, G.: Stochastic resonance in a harmonic oscillator with damping trichotomous noise. Nonlinear Dyn. 77, 1589–1595 (2014)

    Article  MathSciNet  Google Scholar 

  29. Zhong, S., Ma, H., Peng, H., Zhang, L.: Stochastic resonance in a harmonic oscillator with fractional-order external and intrinsic dampings. Nonlinear Dyn. 82, 535–545 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Collins, J.J., Chow, C.C., Capela, A.C., Imhoff, T.T.: Aperiodic stochastic resonance. Phys. Rev. E 54, 5575–5584 (1996)

    Article  Google Scholar 

  31. Barbay, S., Giacomelli, G., Marin, F.: Experimental evidence of binary aperiodic stochastic resonance. Phys. Rev. Lett. 85, 4652–4655 (2000)

    Article  Google Scholar 

  32. Giacomelli, G., Giudici, M., Balle, S., Tredicce, J.R.: Experimental evidence of coherence resonance in an optical system. Phys. Rev. Lett. 84, 3298–3301 (2000)

    Article  Google Scholar 

  33. Escalera Santos, G.J., Rivera, M., Parmananda, P.: Experimental evidence of coexisting periodic stochastic resonance and coherence resonance phenomena. Phys. Rev. Lett. 92, 230601 (2004)

    Article  Google Scholar 

  34. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  35. Kacem, N., Baguet, S., Dufour, R., Hentz, S.: Stability control of nonlinear micromechanical resonators under simultaneous primary and superharmonic resonances. Appl. Phys. Lett. 98, 193507 (2011)

    Article  Google Scholar 

  36. Balachandran, B., Magrab, E.: Vibrations. Cengage Learning, Toronto (2008)

    Google Scholar 

  37. Anishchenko, V.S., Astakhov, V., Neiman, A., Vadivasova, T., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  38. Jung, P., Hänggi, P.: Stochastic nonlinear dynamics modulated by external periodic forces. Europhys. Lett. 8, 505–510 (1989)

    Article  Google Scholar 

  39. Jung, P., Hänggi, P.: Amplification of small signals via stochastic resonance. Phys. Rev. A 44, 8032–8042 (1991)

    Article  Google Scholar 

  40. Zhou, Q., Larsen, J.W., Nielsen, S.R., Qu, W.L.: Nonlinear stochastic analysis of subharmonic response of a shallow cable. Nonlinear Dyn. 48, 97–114 (2007)

    Article  MATH  Google Scholar 

  41. Abe, H., Okada, H., Itatani, R., Ono, M., Okuda, H.: Resonant heating due to cyclotron subharmonic frequency waves. Phys. Rev. Lett. 53, 1153–1156 (1984)

    Article  Google Scholar 

  42. Nielsen, S.R., Sichani, M.T.: Stochastic and chaotic sub-and superharmonic response of shallow cables due to chord elongations. Probab. Eng. Mech. 26, 44–53 (2011)

    Article  Google Scholar 

  43. Arecchi, F.T., Meucci, R., Puccioni, G., Tredicce, J.: Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982)

  44. Kenfack, A., Singh, K.P.: Stochastic resonance in coupled underdamped bistable systems. Phys. Rev. E 82, 046224 (2010)

    Article  MATH  Google Scholar 

  45. Kang, Y.M., Xu, J.X., Xie, Y.: Observing stochastic resonance in an underdamped bistable Duffing oscillator by the method of moments. Phys. Rev. E 68, 036123 (2003)

    Article  Google Scholar 

  46. Tweten, D.J., Mann, B.P.: Experimental investigation of colored noise in stochastic resonance of a bistable beam. Phys. D 268, 25–33 (2014)

    Article  Google Scholar 

  47. Lu, S., He, Q., Kong, F.: Effects of underdamped step-varying second-order stochastic resonance for weak signal detection. Digit. Signal Process. 36, 93–103 (2015)

  48. Xu, Y., Wu, J., Zhang, H., Ma, S.: Stochastic resonance phenomenon in an underdamped bistable system driven by weak asymmetric dichotomous noise. Nonlinear Dyn. 70, 531–539 (2012)

  49. McInnes, C.R., Gorman, D.G., Cartmell, M.P.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008)

    Article  Google Scholar 

  50. Su, D., Zheng, R., Nakano, K., Cartmell, M.P.: On square-wave-driven stochastic resonance for energy harvesting in a bistable system. AIP Adv. 4, 117140 (2014)

    Article  Google Scholar 

  51. Thomsen, J.J.: Vibrations and stability: Advanced Theory, Analysis, and Tools. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. Yang.

Additional information

The work is supported by the National Natural Science Foundation of China (Grant Nos. 11672325, 51305441, 51375480), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, and the Spanish Ministry of Science and Innovation (Grant No. FIS2009-09898). We thank professor Canjun Wang in Baoji University of Arts and Sciences for the useful discussions. We are grateful to the anonymous reviewers for their valuable comments and advice, which are vital for improving the quality of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.H., Sanjuán , M.A.F., Liu, H.G. et al. Noise-induced resonance at the subharmonic frequency in bistable systems. Nonlinear Dyn 87, 1721–1730 (2017). https://doi.org/10.1007/s11071-016-3147-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3147-9

Keywords

Navigation