Skip to main content
Log in

Bifurcation in a planar four-bar mechanism with revolute clearance joint

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Generally, multi-body mechanical systems in which the impact phenomena occur exhibit chaotic and quasi-periodic behavior. Mechanisms with clearance joint are categorized in such systems due to contact between the connecting bodies. In this paper, we would investigate the nonlinear dynamic behavior of a four-bar mechanism with joint and clearance at the connection between the coupler and rocker. Motion equations are derived based on the Lagrangian approach. The nonlinear continuous contact force model proposed by Lankarani and Nikravesh is utilized to evaluate the normal contact force developed in the journal–bearing system. Furthermore, the friction effect on the clearance joint is considered using a modified Coulomb friction law. The dynamical behaviors are numerically identified in discrete state space, based on the Poincaré portraits. Numerical simulations display both periodic and chaotic motions in the system behavior. Therefore, bifurcation analysis has been performed with a change in the size of clearance corresponding to the various values of crank rotational velocities. Then, we compare some clearance ranges, in which the system response becomes stable for these cases. Fast Fourier transformation is also applied to analyze the frequency spectrum of the system response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(c_\mathrm{{r}} \) :

Restitution coefficient

\(c_\mathrm{{f}} \) :

Friction coefficient

\(c_\mathrm{{d}} \) :

Dynamic correction coefficient

\(F_\mathrm{{N}}\,{(}\mathrm {N}{)}\) :

Normal contact force component

\(F_\mathrm{{t}}\,{(}\mathrm {N}{)}\) :

Tangential contact force component

\(K\,{(}{\mathrm{{N/m}}}{)}\) :

Stiffness coefficient

\(M_2\,{(}\mathrm{{N\,m}}{)}\) :

External moment exerted on the crank

\({{{\varvec{Q}}_\mathbf{c }}}\,{(}\mathrm {N}{)}\) :

Resultant contact force

\(r\,{(}\mathrm {m}{)}\) :

Magnitude of clearance vector

\({{{\varvec{r}}_{{\varvec{i}}}^{{\varvec{O}}}}}\,{(}\mathrm {m}{)}\) :

Position vector of bearing center

\({{\varvec{r}}}_{{\varvec{i}}} ^{{\varvec{Q}}}\,{(}\mathrm {m}{)}\) :

Position vector of contact point on the bearing

\({{\varvec{r}}}_{{\varvec{j}}} ^{{\varvec{O}}}\,{(}\mathrm {m}{)}\) :

Position vector of journal center

\({{\varvec{r}}}_{{\varvec{j}}} ^{{\varvec{Q}}}\,{(}\mathrm {m}{)}\) :

Position vector of contact point on the journal

\(\dot{r}\,{(}\mathrm {m/s}{)}\) :

Normal component of relative velocity

\(R_i\,{(}\mathrm {m}{)}\) :

Bearing radius

\(R_j\,{(}\mathrm {m}{)}\) :

Journal radius

\(v_\mathrm{{t}}\,{(}\mathrm {{m/s}} {)}\) :

Relative tangential velocity

\(X_{\mathrm{{rel}}}\,{(}\mathrm {m}{)}\) :

Journal center displacement relative to bearing center in X-direction

\(\dot{X}_{\mathrm{{rel}}}\,{(}\mathrm{{m/s}}{)}\) :

Journal center velocity relative to bearing center in X-direction

\(Y_{\mathrm{{rel}}}\,{(}\mathrm {m}{)}\) :

Journal center displacement relative to bearing center in Y-direction

\(\dot{Y}_{\mathrm{{rel}}}\,{(}\mathrm{{m/s}}{)}\) :

Journal center velocity relative to bearing center in Y-direction

\(\alpha \,{(}{\mathrm{{rad}}}{)}\) :

Orientation of clearance vector

\(\gamma \,{(}{\mathrm{{rad}}}{)}\) :

Orientation of resultant contact force

\(\omega _2\,{(}\mathrm{{rad/s}}{)}\) :

Crank rotational velocity

\(\delta \,{(}\mathrm {m}{)}\) :

Relative penetration depth

\(\dot{\delta }^{(-)}\,{(}\mathrm{{m/s}}{)}\) :

Initial impact velocity

\(\chi \,{(}\mathrm{{N\,s/m^{2}}}{)}\) :

Hysteresis damping coefficient

\(\phi \,{(}\mathrm{{rad}}{)}\) :

Angle between the normal and tangential contact force component

References

  1. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall Inc, Upper Saddle River (1988)

    Google Scholar 

  2. Howell, L.L.: Compliant Mechanisms. Wiley, London (2001)

    Google Scholar 

  3. Varedi, S., Daniali, H., Dardel, M., Fathi, A.: Optimal dynamic design of a planar slider-crank mechanism with a joint clearance. Mech. Mach. Theory 86, 191–200 (2015)

    Article  Google Scholar 

  4. Rahmanian, S., Ghazavi, M.R.: Bifurcation in planar slider-crank mechanism with revolute clearance joint. Mech. Mach. Theory 91, 86–101 (2015)

    Article  Google Scholar 

  5. Pereira, C., Ambrósio, J., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  6. Erkaya, S., Doğan, S., Ulus, Ş.: Effects of joint clearance on the dynamics of a partly compliant mechanism: numerical and experimental studies. Mech. Mach. Theory 88, 125–140 (2015)

    Article  Google Scholar 

  7. Alves, J., Peixinho, N., da Silva, M.T., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 85, 172–188 (2015)

    Article  Google Scholar 

  8. Erkaya, S., Uzmay, İ.: Modeling and simulation of joint clearance effects on mechanisms having rigid and flexible links. J. Mech. Sci. Technol. 28(8), 2979–2986 (2014)

    Article  Google Scholar 

  9. Tang, Y., Chang, Z., Dong, X., Hu, Y., Yu, Z.: Nonlinear dynamics and analysis of a four-bar linkage with clearance. Front. Mech. Eng. 8(2), 160–168 (2013)

    Article  Google Scholar 

  10. Chen, G., Wang, H., Lin, Z.: A unified approach to the accuracy analysis of planar parallel manipulators both with input uncertainties and joint clearance. Mech. Mach. Theory 64, 1–17 (2013)

    Article  Google Scholar 

  11. Olyaei, A.A., Ghazavi, M.R.: Stabilizing slider-crank mechanism with clearance joints. Mech. Mach. Theory 53, 17–29 (2012)

    Article  Google Scholar 

  12. Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012)

    Article  Google Scholar 

  13. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  14. Huang, X., Zhang, Y.: Robust tolerance design for function generation mechanisms with joint clearances. Mech. Mach. Theory 45(9), 1286–1297 (2010)

    Article  MATH  Google Scholar 

  15. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.: Spatial revolute joints with clearances for dynamic analysis of multi-body systems. Proc. Inst. Mech. Eng. K J. Multi Body Dyn. 220(4), 257–271 (2006)

    Google Scholar 

  16. Zhang, J., Du, X.: Time-dependent reliability analysis for function generation mechanisms with random joint clearances. Mech. Mach. Theory 92, 184–199 (2015)

    Article  Google Scholar 

  17. Ma, J., Qian, L., Chen, G., Li, M.: Dynamic analysis of mechanical systems with planar revolute joints with clearance. Mech. Mach. Theory 94, 148–164 (2015)

    Article  Google Scholar 

  18. Li, X., Ding, X., Chirikjian, G.S.: Analysis of angular-error uncertainty in planar multiple-loop structures with joint clearances. Mech. Mach. Theory 91, 69–85 (2015)

    Article  Google Scholar 

  19. Yaqubi, S., Dardel, M., Daniali, H.M., Ghasemi, M.H.: Modeling and control of crank-slider mechanism with multiple clearance joints. Multibody Syst Dyn 36(2), 143–167 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Erkaya, S., Doğan, S.: A comparative analysis of joint clearance effects on articulated and partly compliant mechanisms. Nonlinear Dyn. 81(1–2), 323–341 (2015)

    Article  Google Scholar 

  21. Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances-part 1: formation of dynamic model. J. Manuf. Sci. Eng. 93(1), 305–309 (1971)

    Google Scholar 

  22. Dubowsky, S., Gardner, T.: Dynamic interactions of link elasticity and clearance connections in planar mechanical systems. J. Manuf. Sci. Eng. 97(2), 652–661 (1975)

    Google Scholar 

  23. Earles, S.W.E., Wu, C.L.S.: Motion analysis of a rigid link mechanism with clearance at a bearing using Lagrangian mechanics and digital computation. In: Mechanisms (Proceedings, Institution of Mechanical Engineers), London, pp. 83–89 (1973)

  24. Rhee, J., Akay, A.: Dynamic response of a revolute joint with clearance. Mech. Mach. Theory 31(1), 121–134 (1996)

    Article  Google Scholar 

  25. Haines, R.: An experimental investigation into the dynamic behaviour of revolute joints with varying degrees of clearance. Mech. Mach. Theory 20(3), 221–231 (1985)

    Article  Google Scholar 

  26. Seneviratne, L., Earles, S.: Chaotic behaviour exhibited during contact loss in a clearance joint of a four-bar mechanism. Mech. Mach. Theory 27(3), 307–321 (1992)

    Article  Google Scholar 

  27. Schwab, A., Meijaard, J., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37(9), 895–913 (2002)

    Article  MATH  Google Scholar 

  28. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44(6), 1211–1222 (2009)

    Article  MATH  Google Scholar 

  29. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17), 1359–1369 (2004)

    Article  Google Scholar 

  30. Flores, P., Ambrósio, J., Claro, J., Lankarani, H.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011007 (2008)

    Article  Google Scholar 

  31. Zhang, Z., Xu, L., Flores, P., Lankarani, H.M.: A Kriging model for dynamics of mechanical systems with revolute joint clearances. J. Comput. Nonlinear Dyn. 9(3), 031013 (2014)

    Article  Google Scholar 

  32. Flores, P., Ambrósio, J., Claro, J., Lankarani, H.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006)

    Article  MATH  Google Scholar 

  33. Flores, P., Lankarani, H.M.: Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dyn. 60(1–2), 99–114 (2010)

    Article  MATH  Google Scholar 

  34. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 031003 (2012)

    Article  Google Scholar 

  35. Daniel, G.B., Cavalca, K.L.: Analysis of the dynamics of a slider-crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance. Mech. Mach. Theory 46(10), 1434–1452 (2011)

    Article  MATH  Google Scholar 

  36. Khemili, I., Romdhane, L.: Dynamic analysis of a flexible slider-crank mechanism with clearance. Eur. J. Mech. A Solids 27(5), 882–898 (2008)

    Article  MATH  Google Scholar 

  37. Chunmei, J., Yang, Q., Ling, F., Ling, Z.: The non-linear dynamic behavior of an elastic linkage mechanism with clearances. J. Sound Vib. 249(2), 213–226 (2002)

    Article  Google Scholar 

  38. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64(1–2), 25–47 (2011)

    Article  MATH  Google Scholar 

  39. Tian, Q., Sun, Y., Liu, C., Hu, H., Flores, P.: Elastohydrodynamic lubricated cylindrical joints for rigid-flexible multibody dynamics. Comput. Struct. 114, 106–120 (2013)

    Article  Google Scholar 

  40. Erkaya, S.: Effects of balancing and link flexibility on dynamics of a planar mechanism having joint clearance. Sci. Iran. 19(3), 483–490 (2012)

    Article  Google Scholar 

  41. Bauchau, O.A., Rodriguez, J.: Modeling of joints with clearance in flexible multibody systems. Int. J. Solids Struct. 39(1), 41–63 (2002)

    Article  MATH  Google Scholar 

  42. Koshy, C.S., Flores, P., Lankarani, H.M.: Study of the effect of contact force model on the dynamic response of mechanical systems with dry clearance joints: computational and experimental approaches. Nonlinear Dyn. 73(1–2), 325–338 (2013)

    Article  Google Scholar 

  43. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2(1), 1–24 (1998)

    Article  MATH  Google Scholar 

  44. Lin, R., Ewins, D.: Chaotic vibration of mechanical systems with backlash. Mech. Syst. Signal Process. 7(3), 257–272 (1993)

    Article  Google Scholar 

  45. Stoenescu, E.D., Marghitu, D.B.: Dynamic analysis of a planar rigid-link mechanism with rotating slider joint and clearance. J. Sound Vib. 266(2), 394–404 (2003)

    Article  Google Scholar 

  46. Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33(3), 259–284 (2015)

    Article  MathSciNet  Google Scholar 

  47. Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Study of the friction-induced vibration and contact mechanics of artificial hip joints. Tribol. Int. 70, 1–10 (2014)

    Article  Google Scholar 

  48. Bai, Z.F., Zhao, Y.: Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using a new hybrid contact force model. Int. J. Mech. Sci. 54(1), 190–205 (2012)

    Article  Google Scholar 

  49. Bai, Z.F., Zhao, Y., Chen, J.: Dynamics analysis of planar mechanical system considering revolute clearance joint wear. Tribol. Int. 64, 85–95 (2013)

    Article  Google Scholar 

  50. Reis, V.L., Daniel, G.B., Cavalca, K.L.: Dynamic analysis of a lubricated planar slider-crank mechanism considering friction and Hertz contact effects. Mech. Mach. Theory 74, 257–273 (2014)

    Article  Google Scholar 

  51. Machado, M., Costa, J., Seabra, E., Flores, P.: The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems. Nonlinear Dyn. 69(1–2), 635–654 (2012)

    Article  Google Scholar 

  52. Johnson, K.: One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 196(1), 363–378 (1982)

    Article  Google Scholar 

  53. Lankarani, H., Nikravesh, P.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  54. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Marques, F., Flores, P., Lankarani, H.M.: On the frictional contacts in multibody system dynamics. Multibody Dyn. Comput. Methods Appl. Sci. 42, 67–91 (2016)

  56. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

  57. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61(4), 633–653 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tian, Q., Zhang, Y., Chen, L., Yang, J.J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60(4), 489–511 (2010)

    Article  MATH  Google Scholar 

  59. Flores, P., Ambrósio, J., Claro, J.P., Lankarani, H.: Dynamic behaviour of planar rigid multi-body systems including revolute joints with clearance. Proc. Inst. Mech. Eng. K J. Multibody Dyn. 221(2), 161–174 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Ghazavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahan, S.B., Ghazavi, M.R. & Rahmanian, S. Bifurcation in a planar four-bar mechanism with revolute clearance joint. Nonlinear Dyn 87, 955–973 (2017). https://doi.org/10.1007/s11071-016-3091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3091-8

Keywords

Navigation