Skip to main content
Log in

The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper discusses stability conditions and a chaotic behavior of the Lorenz dynamical system involving the Caputo fractional derivative of orders between 0 and 1. Contrary to some existing results on the topic, we study these problems with respect to a general (not specified) value of the Rayleigh number as a varying control parameter. Such a bifurcation analysis is known for the classical Lorenz system; we show that analysis of its fractional extension can yield different conclusions. In particular, we theoretically derive (and numerically illustrate) that nontrivial equilibria of the fractional Lorenz system become locally asymptotically stable for all values of the Rayleigh number large enough, which contradicts the behavior known from the classical case. As a main proof tool, we derive the optimal Routh–Hurwitz conditions of fractional type, i.e., necessary and sufficient conditions guaranteeing that all zeros of the corresponding characteristic polynomial are located inside the Matignon stability sector. Beside it, we perform other bifurcation investigations of the fractional Lorenz system, especially those documenting its transition from stability to chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Phys. Lett. A 358, 1–4 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Čermák, J., Kisela, T.: Stability properties of two-term fractional differential equations. Nonlinear Dyn. 80, 1673–1684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Danca, M.-F., Romera, M., Pastor, G., Montoya, F.: Finding attractors of continuous-time systems by parameter switching. Nonlinear Dyn. 67, 2317–2342 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2004)

    Google Scholar 

  5. Garrappa, R.: Trapezoidal methods for fractional differential equations: theoretical and computational aspects. Math. Comput. Simulat. 110, 96–112 (2015)

    Article  MathSciNet  Google Scholar 

  6. Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)

    Article  Google Scholar 

  7. Li, C.P., Ma, Y.: Fractional dynamical system and its linearization theorem. Nonlinear Dyn. 71, 621–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X., Wu, R.: Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system. Nonlinear Dyn. 78, 279–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  10. Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn. 71, 241–257 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems Applications, vol. 2, pp. 963–968. IMACS, IEEE-SMC, Lille (1996)

  12. Molaie, M., Jafari, S., Sprott, J.C., Golpayegani, S.M.R.H.: Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos Appl. Sci. Eng. 23, 7, Article ID 1350188 (2013)

  13. Muthukumar, P., Balasubramaniam, P.: Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dyn. 74, 1169–1181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Odibat, Z.: A note on phase synchronization in coupled chaotic fractional order systems order systems. Nonlinear Anal.: Real World Appl. 13, 779–789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Higher Education Press, Springer, Beijing, Berlin (2011)

    Book  MATH  Google Scholar 

  16. Phillipson, P.E., Schuster, P.: Bifurcation dynamics of three-dimensional systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 10, 1787–1804 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Podlubný, I.: Fractional Differential Equations. Academic Press, New Jersey (1999)

    MATH  Google Scholar 

  18. Srivastava, M., Agrawal, S.K., Vishal, K., Das, S.: Chaos control of fractional order Rabinovich-Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich-Fabrikant system. Appl. Math. Model. 38, 3361–3372 (2014)

    Article  MathSciNet  Google Scholar 

  19. Sun, K., Sprott, J.C.: Bifurcations of fractional-order diffusionless Lorenz system. Elect. J. Theor. Phys. 6, 123–134 (2009)

    Google Scholar 

  20. Sun, K., Sprott, J.C.: Dynamics of a simplified Lorenz system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 19, 1357–1366 (2009)

    Article  MATH  Google Scholar 

  21. Sun, K., Wang, X., Sprott, J.C.: Bifurcations and chaos in fractional-order simplified Lorenz system. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20, 1209–1219 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, Q., Zeng, C.: Chaos in fractional conjugate Lorenz system and its scaling attractors. Commun. Nonlinear Sci. Numer. Simulat. 15, 4041–4051 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ye, Z., Deng, C.: Adaptive synchronization to a general non-autonomous chaotic system and its applications. Nonlinear Anal. : Real World Appl. 13, 840–849 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yu, Y., Li, H.-X., Wanga, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Soliton. Fract. 42, 1181–1189 (2009)

  26. Yunquan, K., Chunfang, M.: Mittag-Leffler stability of fractional-order Lorenz and Lorenz-family systems. Nonlinear Dyn. 83, 1237–1246 (2016)

  27. Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, P., Zhu, W.: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal.: Real World Appl. 12, 811–816 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  30. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier & Academic Press, Cambridge (2016)

    MATH  Google Scholar 

Download references

Acknowledgments

The research has been supported by the Project LO1202 (funded by the MEYS under the National Sustainability Programme I). The authors are grateful to the referees for a careful reading of this manuscript and their useful recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Čermák.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čermák, J., Nechvátal, L. The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system. Nonlinear Dyn 87, 939–954 (2017). https://doi.org/10.1007/s11071-016-3090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3090-9

Keywords

Navigation