Skip to main content

Advertisement

Log in

Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Theoretical analysis and experimental verification of nonlinear monostable energy harvesters are presented to enhance energy harvesting performance from low-level ambient vibrations. Harmonic balance analysis of these harvesters demonstrates that there are two stable orbits (high-branch orbit and low-branch orbit) in a specific multi-solution range when the excitation level is larger than a threshold. Under the same excitation, these nonlinear harvesters may finally vibrate at different orbits depending on different initial conditions or disturbances. The energy harvesting efficiency will be greatly improved if high-branch oscillations could be induced in the multi-solution range. Numerical investigations into the influence of a disturbance method and initial conditions on high-branch oscillations are performed for energy harvesting enhancement of nonlinear monostable energy harvesters. Experimental results verify the effectiveness of adding disturbances by using an impact method for improving energy harvesting performance and the capability of nonlinear monostable energy harvesters in maintaining high-branch oscillations at low-level vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ulukus, S., Yener, A., Erkip, E., Simeone, O., Zorzi, M., Grover, P., Huang, K.: Energy harvesting wireless communications: a review of recent advances. IEEE J. Sel. Area. Commun. 33(3), 360–381 (2015)

    Article  Google Scholar 

  2. Bowen, C.R., Kim, H.A., Weaver, P.M., Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy. Environ. Sci. 7(1), 25–44 (2014)

    Article  Google Scholar 

  3. Toprak, A., Tigli, O.: Piezoelectric energy harvesting: state-of-the-art and challenges. Appl. Phys. Rev. 1(3), 031104 (2014)

    Article  Google Scholar 

  4. Priya, S., Inman, Daniel J.: Energy Harvesting Technologies. Springer, New York (2009)

    Book  Google Scholar 

  5. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008)

    Article  Google Scholar 

  6. Tang, L., Yang, Y.: A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl. Phys. Lett. 101(9), 094102 (2012)

    Article  Google Scholar 

  7. Zhou, S., Chen, W., Malakooti, M.H., Cao, J., Inman, D.J.: Design and modeling of a flexible zigzag structure for enhanced vibration energy harvesting. J. Intell. Mater. Syst. Struct. doi:10.1177/1045389X16645862

  8. Tang, L.H., Yang, Y.W., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21, 1867–1697 (2010)

    Article  Google Scholar 

  9. Wang, Y., Inman, D.J.: Comparison of control laws for vibration suppression based on energy consumption. J. Intell. Mater. Syst. Struct. 22(8), 795–809 (2011)

    Article  Google Scholar 

  10. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66(4), 040801 (2014)

    Article  Google Scholar 

  11. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  Google Scholar 

  12. Daqaq, M.F.: Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise. J. Sound Vib. 330(11), 2554–2564 (2011)

    Article  Google Scholar 

  13. Zhou, S., Cao, J., Wang, W., Liu, S., Lin, J.: Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration. Smart Mater. Struct. 24(5), 055008 (2015)

    Article  Google Scholar 

  14. Litak, G., Borowiec, M.: On simulation of a bistable system with fractional damping in the presence of stochastic coherence resonance. Nonlinear Dyn. 77(3), 681–686 (2014)

    Article  MathSciNet  Google Scholar 

  15. Stanton, S.C., Owens, B.A., Mann, B.P.: Harmonic balance analysis of the bistable piezoelectric inertial generator. J. Sound Vib. 331(15), 3617–3627 (2012)

    Article  Google Scholar 

  16. Harne, R.L., Thota, M., Wang, K.W.: Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvesters. Appl. Phys. Lett. 102(5), 053903 (2013)

    Article  Google Scholar 

  17. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)

    Article  Google Scholar 

  18. Stanton, S.C., McGehee, C.C., Mann, B.P.: Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Phys. D. 239(10), 640–653 (2010)

    Article  MATH  Google Scholar 

  19. Tang, L., Yang, Y., Soh, C.K.: Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 23, 1433–1449 (2012)

    Article  Google Scholar 

  20. Zhou, S., Cao, J., Erturk, A., Lin, J.: Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Appl. Phys. Lett. 102(17), 173901 (2013)

  21. Li, H., Qin, W., Lan, C., Deng, W., Zhou, Z.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25(1), 015001 (2015)

    Google Scholar 

  22. Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  23. Zhou, S., Cao, J., Lin, J., Wang, Z.: Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J. Appl. Phys. 67(03), 30902 (2014)

    Article  Google Scholar 

  24. Tékam, G.T.O., Kwuimy, C.A.K., Woafo, P.: Analysis of tristable energy harvesting system having fractional order viscoelastic material. Chaos 25(1), 013112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, S., Cao, J., Inman, D.J., Liu, S.S., Wang, W., Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106(9), 093901 (2015)

    Article  Google Scholar 

  26. Stanton, S.C., McGehee, C.C., Mann, B.P.: Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl. Phys. Lett. 95(17), 174103 (2009)

    Article  Google Scholar 

  27. Abdelkefi, A., Barsallo, N.: Comparative modeling of low-frequency piezomagnetoelastic energy harvesters. J. Intell. Mater. Syst. Struct. 25(14), 1771–1785 (2014)

    Article  Google Scholar 

  28. Daqaq, M.F.: Response of uni-modal Duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621–3631 (2010)

    Article  Google Scholar 

  29. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(7), 075022 (2011)

    Article  Google Scholar 

  30. Fan, K.Q., Chao, F.B., Zhang, J.G., Wang, W.D., Che, X.H.: Design and experimental verification of a bi-directional nonlinear piezoelectric energy harvester. Energy Convers. Manage. 86, 561–567 (2014)

    Article  Google Scholar 

  31. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69(3), 1063–1079 (2012)

    Article  MathSciNet  Google Scholar 

  32. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319(1), 515–530 (2009)

    Article  Google Scholar 

  33. Cao, J., Zhou, S., Inman, D.J., Lin, J.: Nonlinear dynamic characteristics of variable inclination magnetically coupled piezoelectric energy harvesters. J. Vib. Acoust. 137(2), 021015 (2015)

    Article  Google Scholar 

  34. Zhao, S., Erturk, A.: On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl. Phys. Lett. 102(10), 103902 (2013)

    Article  Google Scholar 

  35. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behavior. Wiley, Chichester (2011)

    Book  MATH  Google Scholar 

  36. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Chichester (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

This project has been supported by the National Natural Science Foundation of China (Grant Nos. 51575426, 51421004), Program for New Century Excellent Talents in University (Grant No. NCET-12-0453), Fundamental Research Funds for the Central Universities of China (Grant No. CXTD2014001) and China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Cao, J. & Lin, J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn 86, 1599–1611 (2016). https://doi.org/10.1007/s11071-016-2979-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2979-7

Keywords

Navigation