Skip to main content
Log in

Stability of periodic modes and bifurcation behaviors in a bouncing-dimer system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recent experiments and simulations have shown that a dumbbell-shaped body, termed as a dimer, on a vibrating plate exhibits an amazing self-ordered phenomenon, in which its horizontal motion can take directed transport behavior when the body bounces periodically. While the existing investigations have detailed its dynamics comprehensively, it still remains unclear how the physical parameters of the system affect the emergence of the intriguing phenomenon. In this paper, we first reduce the numerical model of the system into a simple model under an assumption that one end of the body always stays on the vibrating plate, while the other end bounces periodically. The simplification on modeling enables us to establish a discrete map focusing on the impact of the bouncing end. Then, the stability of the periodic behavior can be addressed by analyzing the property of the impact map around its fixed points. Finally, the stability properties of the self-ordered behaviors can be quantified by an explicit relation between the coefficient of restitution e and the vibration intensity \(\varGamma \). The developed theoretical results demonstrate that the system exhibits rich nonlinear phenomena, including simple periodic modes, chattering, multiperiodicity, period-doubling bifurcation, and chaos. Guided by the theoretical predictions, we performed investigations via experiments and simulations. Comparison with the results obtained from the numerical model and the experiments reveals that the analytical results are very effective in accurate predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dorbolo, S., Volfson, D., Tsimring, L., Kudrolli, A.: Dynamics of a bouncing dimer. Phys. Rev. Lett. 95, 044101 (2005)

    Article  Google Scholar 

  2. Wang, J., Liu, C., Zhao, Z.: Nonsmooth dynamics of a 3D rigid body on a vibrating plate. Multibody Syst. Dyn. 32, 217–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, J., Liu, C., Jia, Y., Ma, D.: Rachet rotation of a 3D dimer on a vibrating plate. Eur. Phys. J. E 27, 1–13 (2014)

    Article  Google Scholar 

  4. Wang, J., Liu, C., Ma, D., Peng, W.: Transport behaviors of a rigid body under vibration. Proc. R. Soc. A (2014). doi:10.1098/rspa.2014.0439

    Google Scholar 

  5. Volfson, D., Kudrolli, A., Tsimring, L.S.: Anisotropy-driven dynamics in vibrated granular rods. Phys. Rev. E 70, 051312 (2004)

    Article  Google Scholar 

  6. Kudrolli, A., Lumay, G., Volfson, D., Tsimring, L.S.: Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008)

    Article  Google Scholar 

  7. Blair, D.L., Neicu, T., Kudrolli, A.: Vortices in vibrated granular rods. Phys. Rev. E 67, 031303 (2003)

    Article  Google Scholar 

  8. Aranson, I.J., Tsimring, L.S.: Model of coarsening and vortex formation in vibrated granular rods. Phys. Rev. E 67, 021305 (2003)

    Article  MathSciNet  Google Scholar 

  9. Atwell, J., Olafsen, J.S.: Anisotropic dynamics in a shaken granular dimer gas experiment. Phys. Rev. E 71, 062301 (2005)

    Article  Google Scholar 

  10. Wright, H.S., Swift, M.R., King, P.J.: Stochastic dynamics of a rod bouncing upon a vibrating surface. Phys. Rev. E 74, 061309 (2006)

    Article  Google Scholar 

  11. Harth, K., Kornek, U., Trittel, T., Strachauer, U., Höme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013)

    Article  Google Scholar 

  12. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A 464, 3193–3211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results. Proc. R. Soc. A 465, 1–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, Z., Liu, C., Brogliato, B.: Energy dissipation and dispersion effects in granular media. Phys. Rev. E 78, 031307 (2008)

    Article  MathSciNet  Google Scholar 

  15. Zhao, Z., Liu, C., Brogliato, B.: Planar dynamics of a rigid body system with frictional impacts. II. Qualitative analysis and numerical simulations. Proc. R. Soc. A 465, 2267–2292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84, 173–189 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Burnham, N.A., Kulik, A.J., Gremaud, G., Briggs, G.A.D.: Nanosubharmonics: the dynamics of small nonlinear contacts. Phys. Rev. Lett. 74, 5092–5095 (1995)

    Article  Google Scholar 

  18. Gilet, T., Bush, J.W.M.: Chaotic bouncing of a droplet on a soap film. 2009. Phys. Rev. Lett. 102, 014501 (2009)

    Article  Google Scholar 

  19. Gilet, T., Terwagne, D., Vandewalle, N., Dorbolo, S.: Dynamics of a bouncing droplet onto a vertically vibrated interface. Phys. Rev. Lett. 100, 167802 (2008)

    Article  Google Scholar 

  20. Aguilar, J., Lesov, A., Wiesenfeld, K., Goldman, D.I.: Lift-off dynamics in a simple jumping robot. Phys. Rev. Lett. 109, 174301 (2012)

    Article  Google Scholar 

  21. Leine, R.I.: Non-smooth stability analysis of the parametrically excited impact oscillator. Int. J. Non-Linear Mech. 47, 1020–1032 (2012)

    Article  Google Scholar 

  22. Davis, R.B., Virgin, L.N.: Non-linear behavior in a discretely forced oscillator. Int. J. Non-Linear Mech. 42, 744–753 (2007)

    Article  Google Scholar 

  23. Tufillaro, N.B., Mello, T.M., Choi, Y.M., Albano, A.M.: Period doubling boundaries of a bouncing ball. J. Phys. Fr. 47, 1477–1482 (1986)

    Article  Google Scholar 

  24. Luo, A.C.J., Han, R.P.S.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 10, 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  25. Barroso, J.J., Carneiro, M.V., Macau, E.E.N.: Bouncing ball problem: stability of the periodic modes. Phys. Rev. E 79, 026206 (2009)

    Article  MathSciNet  Google Scholar 

  26. Wylie, J.J., Zhang, Q.: Periodic orbits of a one-dimensional inelastic particle system. C. R. Acad. Sci. Paris Ser. I 339, 603–606 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pieranski, P.: Direct evidence for the suppression of period doubling in the bouncing-ball model. Phys. Rev. A 37, 1782–1785 (1988)

    Article  MathSciNet  Google Scholar 

  28. Kowalik, Z.J., Franaszek, M., Pierański, P.: Self-reanimating chaos in the bouncing-ball system. Phys. Rev. A 37, 4016–4022 (1988)

    Article  MathSciNet  Google Scholar 

  29. Vargas, M.C., Huerta, D.A., Sosa, V.: Chaos control: the problem of a bouncing ball revisited. Am. J. Phys. 77, 857–861 (2009)

    Article  Google Scholar 

  30. Sebastian, V., Stefan, J.L.: Regular and chaotic dynamics in bouncing ball models. Int. J. Bifurc. Chaos 21, 869–884 (2011)

  31. Oliveira, D.F.M., Leonel, E.D.: Parameter space for a dissipative Fermi–Ulam model. New J. Phys. 13, 123012 (2011)

    Article  Google Scholar 

  32. Luck, J.M., Mehta, A.: Bouncing ball with a finite restitution: chattering, locking, and chaos. Phys. Rev. E 48, 3988–3997 (1993)

    Article  MathSciNet  Google Scholar 

  33. Giusepponi, S., Marchesoni, F.: The chattering dynamics of an ideal bouncing ball. Europhys. Lett 64, 36–42 (2003)

    Article  Google Scholar 

  34. Gilet, T., Vandewalle, N., Dorbolo, S.: Completely inelastic ball. Phys. Rev. E 79, 055201 (2009)

    Article  Google Scholar 

  35. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  36. Liu, C., Zhang, H., Zhao, Z., Brogliato, B.: Impact-contact dynamics in a disc-ball system. Proc. R. Soc. A 469, 20120741 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhong, H., Lee, C., Su, Z., Chen, S., Zhou, M., Wu, J.: Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion. J. Fluid Mech. 716, 228–250 (2013)

    Article  MATH  Google Scholar 

  38. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiao Wang or Caishan Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (11132001). The authors would like to thank Dr. Hongjie Zhong and Dr. Daolin Ma for their kind help in developing stereoscopic vision technique in our experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, C., Wiercigroch, M. et al. Stability of periodic modes and bifurcation behaviors in a bouncing-dimer system. Nonlinear Dyn 86, 1477–1492 (2016). https://doi.org/10.1007/s11071-016-2973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2973-0

Keywords

Mathematics Subject Classification

Navigation