Skip to main content
Log in

Classification of the bifurcation structure of a periodically driven gas bubble

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The bifurcation structure of a periodically driven spherical gas/vapour bubble is examined by means of methods of nonlinear analysis. The study of Behnia et al. (Ultrasonics 49(8):605, 2009) revealed that the bifurcation structures with the pressure amplitude of the excitation as control parameter are structurally similar provided that \(R_\mathrm{E} \omega \) is kept constant. In the present paper, this problem is revisited. Analytical and numerical investigations of the bubble oscillator, which is the Keller–Miksis equation, are presented. It is shown that the validity range of Behnia’s condition is governed by the viscosity and the surface tension, and holds only for relatively large bubbles. In water, the effect of viscosity is negligible, and the surface tension plays significant role at bubble size lower than approximately \(5\,\upmu \mathrm {m}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Sarkhosh, L.: Towards classification of the bifurcation structure of a spherical cavitation bubble. Ultrasonics 49(8), 605 (2009)

    Article  Google Scholar 

  2. Leighton, T.G.: The Acoustic Bubble. Academic Press, London (2012)

    MATH  Google Scholar 

  3. Mettin, R.: From a single bubble to bubble structures in acoustic cavitation. In: Kurz, T., Parlitz, U., Kaatze, U. (eds.) Oscillations, Waves and Interactions: Sixty Years Drittes Physikalisches Institut; a Festschrift. Universitätsverlag Göttingen, Göttingen (2007)

  4. Mettin, R.: Bubble structures in acoustic cavitation. In: Doinikov, A.A. (ed.) Bubble and Particle Dynamics in Acoustic Fields: Modern Trends and Applications. Research Signpost, Trivandrum (2005)

  5. Mettin, R., Cairós, C., Troia, A.: Sonochemistry and bubble dynamics. Ultrason. Sonochem. 25, 24 (2015)

    Article  Google Scholar 

  6. Mason, T.J.: Some neglected or rejected paths in sonochemistry—a very personal view. Ultrason. Sonochem. 25, 89 (2015)

    Article  Google Scholar 

  7. Stricker, L., Lohse, D.: Radical production inside an acoustically driven microbubble. Ultrason. Sonochem. 21(1), 336 (2014)

    Article  Google Scholar 

  8. Rahimi, M., Safari, S., Faryadi, M., Moradi, N.: Experimental investigation on proper use of dual high-low frequency ultrasound waves—advantage and disadvantage. Chem. Eng. Process. 78, 17 (2014)

    Article  Google Scholar 

  9. Khanna, S., Chakma, S., Moholkar, V.S.: Phase diagrams for dual frequency sonic processors using organic liquid medium. Chem. Eng. Sci. 100, 137 (2013)

    Article  Google Scholar 

  10. Kanthale, P., Ashokkumar, M., Grieser, F.: Sonoluminescence, sonochemistry (\(\rm H_2O_2\) yield) and bubble dynamics: frequency and power effects. Ultrason. Sonochem. 15(2), 143 (2008)

    Article  Google Scholar 

  11. Iida, Y., Tuziuti, T., Yasui, K., Towata, A., Kozuka, T.: Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov. Food Sci. Emerg. 9(2), 140 (2008)

    Article  Google Scholar 

  12. Knorr, D., Zenker, M., Heinz, V., Lee, D.U.: Applications and potential of ultrasonics in food processing. Trends Sci. Technol. 15(5), 261 (2004)

    Article  Google Scholar 

  13. Seshadri, R., Weiss, J., Hulbert, G.J., Mount, J.: Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. Food Hydrocoll. 17(2), 191 (2003)

    Article  Google Scholar 

  14. Mitragotri, S.: Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255 (2005)

    Article  Google Scholar 

  15. Xu, Z., Ludomirsky, A., Eun, L.Y., Hall, T.L., Tran, B.C., Fowlkes, J.B., Cain, C.A.: Controlled ultrasound tissue erosion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(6), 726 (2004)

    Article  Google Scholar 

  16. Kennedy, J.E., Ter Haar, G.R., Cranston, D.: High intensity focused ultrasound: surgery of the future? Br. J. Radiol. 76(909), 590 (2003)

    Article  Google Scholar 

  17. Chaussy, C.H., Brendel, W., Schmiedt, E.: Extracorporeally induced destruction of kidney stones by shock waves. Lancet 316(8207), 1265 (1980)

    Article  Google Scholar 

  18. Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73(10), 106501 (2010)

    Article  Google Scholar 

  19. Feng, Z.C., Leal, L.G.: Nonlinear bubble dynamics. Annu. Rev. Fluid. Mech. 29(1), 201 (1997)

    Article  MathSciNet  Google Scholar 

  20. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9(1), 145 (1977)

    Article  MATH  Google Scholar 

  21. Varga, R., Paál, G.: Numerical investigation of the strength of collapse of a harmonically excited bubble. Chaos Solitons Fractals 76, 56 (2015)

    Article  MathSciNet  Google Scholar 

  22. Sojahrood, A.J., Falou, O., Earl, R., Karshafian, R., Kolios, M.C.: Influence of the pressure-dependent resonance frequency on the bifurcation structure and backscattered pressure of ultrasound contrast agents: a numerical investigation. Nonlinear Dyn. 80(1–2), 889 (2015)

    Article  Google Scholar 

  23. Hegedűs, F., Klapcsik, K.: The effect of high viscosity on the collapse-like chaotic and regular periodic oscillations of a harmonically excited gas bubble. Ultrason. Sonochem. 27, 153 (2015)

    Article  Google Scholar 

  24. Hegedűs, F.: Stable bubble oscillations beyond Blake’s critical threshold. Ultrasonics 54(4), 1113 (2014)

    Article  Google Scholar 

  25. Behnia, S., Zahir, H., Yahyavi, M., Barzegar, A., Mobadersani, F.: Observations on the dynamics of bubble cluster in an ultrasonic field. Nonlinear Dyn. 72(3), 561 (2013)

    Article  MathSciNet  Google Scholar 

  26. Behnia, S., Mobadersani, F., Yahyavi, M., Rezavand, A.: Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study. Nonlinear Dyn. 74(3), 559 (2013)

    Article  MathSciNet  Google Scholar 

  27. Hegedűs, F., Hős, C., Kullmann, L.: Stable period 1, 2 and 3 structures of the harmonically excited Rayleigh Plesset equation applying low ambient pressure. IMA. J. Appl. Math. 78(6), 1179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sojahrood, A.J., Kolios, M.C.: Classification of the nonlinear dynamics and bifurcation structure of ultrasound contrast agents excited at higher multiples of their resonance frequency. Phys. Lett. A 376(33), 2222 (2012)

    Article  Google Scholar 

  29. Hegedűs, F., Kullmann, L.: Basins of attraction in a harmonically excited spherical bubble model. Period. Polytech. Mech. Eng. 56(2), 125 (2012)

    Article  Google Scholar 

  30. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Nonlinear transitions of a spherical cavitation bubble. Chaos Solitons Fractals 41(2), 818 (2009)

    Article  Google Scholar 

  31. Behnia, S., Sojahrood, A.J., Soltanpoor, W., Jahanbakhsh, O.: Suppressing chaotic oscillations of a spherical cavitation bubble through applying a periodic perturbation. Ultrason. Sonochem. 16(4), 502 (2009)

    Article  Google Scholar 

  32. Brujan, E.A.: Bifurcation structure of bubble oscillators in polymer solutions. Acta Acust. United Acust. 95(2), 241 (2009)

    Article  Google Scholar 

  33. Simon, G., Cvitanovic, P., Levinsen, M.T., Csabai, I., Horvth, A.: Periodic orbit theory applied to a chaotically oscillating gas bubble in water. Nonlinearity 15(1), 25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Parlitz, U., Englisch, V., Scheffczyk, C., Lauterborn, W.: Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 88(2), 1061 (1990)

    Article  MathSciNet  Google Scholar 

  35. Lauterborn, W., Parlitz, U.: Methods of chaos physics and their application to acoustics. J. Acoust. Soc. Am. 84(6), 1975 (1988)

    Article  MathSciNet  Google Scholar 

  36. Lauterborn, W.: Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 59(2), 283 (1976)

    Article  MathSciNet  Google Scholar 

  37. Kurz, T., Lauterborn, W.: Bifurcation structure of the Toda oscillator. Phys. Rev. A 37, 1029 (1988)

    Article  MathSciNet  Google Scholar 

  38. Bonatto, C., Gallas, J.A.C., Ueda, Y.: Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator. Phys. Rev. E 77(2), 026217 (2008)

    Article  Google Scholar 

  39. Kim, S.Y.: Bifurcation structure of the double-well Duffing oscillator. Int. J. Mod. Phys. B 14(17), 1801 (2000)

    Article  Google Scholar 

  40. Gilmore, R., McCallum, J.W.L.: Structure in the bifurcation diagram of the Duffing oscillator. Phys. Rev. E 51, 935 (1995)

    Article  MathSciNet  Google Scholar 

  41. Kozłowski, J., Parlitz, U., Lauterborn, W.: Bifurcation analysis of two coupled periodically driven Duffing oscillators. Phys. Rev. E 51(3), 1861 (1995)

    Article  Google Scholar 

  42. Scheffczyk, C., Parlitz, U., Kurz, T., Knop, W., Lauterborn, W.: Comparison of bifurcation structures of driven dissipative nonlinear oscillators. Phys. Rev. A 43(12), 6495 (1991)

    Article  MathSciNet  Google Scholar 

  43. Gu, H., Pan, B., Chen, G., Duan, L.: Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models. Nonlinear Dyn. 78(1), 391 (2014)

    Article  MathSciNet  Google Scholar 

  44. Gu, H., Pan, B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81(4), 2107 (2015)

    Article  MathSciNet  Google Scholar 

  45. Keller, J.B., Miksis, M.: Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68(2), 628 (1980)

    Article  MATH  Google Scholar 

  46. Haar, L., Gallagher, J.S., Kell, G.S.: NBS/NRC Wasserdampftafeln. Springer, Berlin (1988)

    Book  Google Scholar 

  47. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  48. Závodszky, G., Károlyi, G., Paál, G.: Emerging fractal patterns in a real 3D cerebral aneurysm. J. Theor. Biol. 368, 95 (2015)

    Article  Google Scholar 

  49. Hős, C.J., Champneys, A.R., Paul, K., McNeely, M.: Dynamic behaviour of direct spring loaded pressure relief valves in gas service: II reduced order modelling. J. Loss Prevent. Process Ind. 36, 1 (2015)

  50. Hős, C., Champneys, A.R.: Grazing bifurcations and chatter in a pressure relief valve model. Phys. D 241(22), 2068 (2012)

  51. Hős, C., Champneys, A.R., Kullmann, L.: Bifurcation analysis of surge and rotating stall in the Moore Greitzer compression system. IMA. J. Appl. Math. 68(2), 205 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Prosperetti, A.: Nonlinear oscillations of gas bubbles in liquids: steady-state solutions. J. Acoust. Soc. Am. 56(3), 878 (1974)

    Article  Google Scholar 

  53. Minnaert, M.: On musical air-bubbles and the sounds of running water. Philos. Mag. 16(104), 235 (1933)

    Article  Google Scholar 

  54. Brotchie, A., Grieser, F., Ashokkumar, M.: Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys. Rev. Lett. 102(8), 084302 (2009)

    Article  Google Scholar 

  55. Lee, J., Ashokkumar, M., Kentish, S., Grieser, F.: Determination of the size distribution of sonoluminescence bubbles in a pulsed acoustic field. J. Am. Chem. Soc. 127(48), 16810 (2005)

    Article  Google Scholar 

  56. Chen, W.S., Matula, T.J., Crum, L.A.: The disappearance of ultrasound contrast bubbles: observations of bubble dissolution and cavitation nucleation. Ultrasound Med. Biol. 28(6), 793–803 (2002)

    Article  Google Scholar 

  57. Burdin, F., Tsochatzidis, N.A., Guiraud, P., Wilhelm, A.M., Delmas, H.: Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrason. Sonochem. 6(1–2), 43 (1999)

    Article  Google Scholar 

  58. Louisnard, O., Gomez, F.: Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Phys. Rev. E 67(3), 036610 (2003)

    Article  Google Scholar 

  59. Fyrillas, M.M., Szeri, A.J.: Dissolution or growth of soluble spherical oscillating bubbles. J. Fluid Mech. 277, 381 (1994)

    Article  MATH  Google Scholar 

  60. Crum, L.A.: Acoustic cavitation series: part five rectified diffusion. Ultrasonics 2(5), 215 (1984)

    Article  Google Scholar 

  61. Koch, P., Kurz, T., Parlitz, U., Lauterborn, W.: Bubble dynamics in a standing sound field: the bubble habitat. J. Acoust. Soc. Am. 130(5), 3370 (2011)

    Article  Google Scholar 

  62. Holzfuss, J.: Surface-wave instabilities, period doubling, and an approximate universal boundary of bubble stability at the upper threshold of sonoluminescence. Phys. Rev. E 77(6), 066309 (2008)

    Article  Google Scholar 

  63. Hegedűs, F., Koch, S., Garen, W., Pandula, Z., Paál, G., Kullmann, L., Teubner, U.: The effect of high viscosity on compressible and incompressible Rayleigh–Plesset-type bubble models. Int. J. Heat Fluid Flow 42, 200 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this paper was supported by the Hungarian Scientific Research Fund—OTKA, Grant No. K81621. This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxána Varga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, R., Hegedűs, F. Classification of the bifurcation structure of a periodically driven gas bubble. Nonlinear Dyn 86, 1239–1248 (2016). https://doi.org/10.1007/s11071-016-2960-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2960-5

Keywords

Navigation