Skip to main content
Log in

Study on the control technology of optical solitons in optical fibers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The control technology of optical solitons has been the applications of all-optical shaping, all-optical switching and signal routing. In optical communications, the dispersion-decreasing fiber (DDF) is used in the control technology of optical solitons. At the same time, when optical solitons are propagated in the DDF, they can form the stable waveforms, which are suitable for long-distance transmission systems. In this paper, with the optical soliton control technology, we study the propagation properties of optical solitons in the DDF. It is found that we can adjust the amplitude of optical solitons, and the amplitude of vibration can be controlled by selecting the appropriate parameters of the DDF. In addition, we can change the transmission mode of optical solitons in the DDF and amplify optical solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu, W.J., Tian, B., Zhang, H.Q.: Types of solutions of the variable-coefficient nonlinear Schrödinger equation with symbolic computation. Phys. Rev. E 78, 066613 (2008)

    Article  MathSciNet  Google Scholar 

  2. Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov–Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)

    Article  MathSciNet  Google Scholar 

  3. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    Article  MathSciNet  Google Scholar 

  4. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)

    Article  MathSciNet  Google Scholar 

  5. Wang, Y.Y., Dai, C.Q.: Elastic interactions between multivalued foldons and anti-foldons for the (2+1)-dimensional variable coefficient Broer-Kaup system in water waves. Nonlinear Dyn. 74, 429–438 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Article  Google Scholar 

  7. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E 93, 012214 (2016)

    Article  Google Scholar 

  8. Guo, R., Hao, H.Q.: Breathers and multi-soliton solutions for the higher-order generalized nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 18, 2426–2435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, L., Zhu, Y.J., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)

    Article  MathSciNet  Google Scholar 

  10. Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger MaxwellCBloch equations. Ann. Phys. 359, 97–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, W.J., Huang, L.G., Huang, P., Li, Y.Q., Lei, M.: Dark soliton control in inhomogeneous optical fibers. Appl. Math. Lett. 61, 80–87 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, W.J., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  Google Scholar 

  13. Haque, M.M., Rahman, M.S., Habib, M.S., Habib, M.S.: A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications. Photonics Nanostruct. 14, 63–70 (2015)

    Article  Google Scholar 

  14. Birks, T.A., Mogilevtsev, D., Knight, J.C., Russell, P.S.: Dispersion compensation using single-material fibers. IEEE Photonics Technol. Lett. 11, 674–676 (1999)

    Article  Google Scholar 

  15. Hill, K.O., Meltz, G.: Fiber Bragg grating technology fundamentals and overview. J. Lightwave Technol. 15, 1263–1276 (1997)

    Article  Google Scholar 

  16. Madsen, C.K., Lenz, G.: Optical all-pass filters for phase response design with applications for dispersion compensation. IEEE Photonics Technol. Lett. 10, 994–996 (1998)

    Article  Google Scholar 

  17. Kang, Z., Yuan, J.H., Li, S., Xie, S.L., Yan, B.B., Sang, X.Z., Yu, C.X.: Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques. Chin. Phys. B 22, 114211 (2013)

    Article  Google Scholar 

  18. Essiambre, R.J., Agrawal, G.P.: Timing jitter of ultrashort solitons in high-speed communication systems. I. General formulation and application to dispersion-decreasing fibers. J. Opt. Soc. Am. B 14, 314–322 (1997)

    Article  Google Scholar 

  19. Jia, R.X., Yan, H.L., Liu, W.J., Lei, M.: Periodic solitons in dispersion decreasing fibers with a cosine profile. Chin. Phys B 23, 100502 (2014)

    Article  Google Scholar 

  20. Sun, Q.H., Pan, N., Lei, M., Liu, W.J.: Study on phase-shift control in dispersion decreasing fibers. Acta. Phys. Sin. 63, 150506 (2014)

    Google Scholar 

  21. Jia, R.X., Wang, Y.C., Liu, W.J., Lei, M.: Soliton interactions in dispersion-decreasing fibers with the exponential dispersion profile. J. Mod. Opt. 60, 1993–1997 (2014)

  22. Dai, C.Q., Chen, J.L.: Ultrashort optical solitons in the dispersion-decreasing fibers. Chin. Phys. B 21, 080507 (2012)

    Article  MathSciNet  Google Scholar 

  23. Dai, C.Q., Wang, Y.Y., Chen, J.L.: Analytic investigation on the similariton transmission control in the dispersion decreasing fiber. Opt. Commun. 284, 3440–3444 (2011)

    Article  Google Scholar 

  24. Li, Q., Nakkeeran, K., Wai, P.K.A.: Ultrashort pulse train generation using nonlinear optical fibers with exponentially decreasing dispersion. J. Opt. Soc. Am. B 31, 1786–1792 (2014)

    Article  Google Scholar 

  25. Liu, W.J., Tian, B., Xu, T., Cai, K.J., Zhang, H.: Pulse amplification in dispersion-decreasing fibers with symbolic computation. Commun. Theor. Phys. 52, 1076–1080 (2009)

    Article  MATH  Google Scholar 

  26. Liu, W.J., Pang, L.H., Yan, H., Lei, M.: Optical soliton shaping in dispersion decreasing fibers. Nonlinear Dyn. 84, 2205–2209 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the Editors and Referees for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 61205064, and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant No. IPOC2015ZC07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Liu or Ming Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, Y., Pang, L. et al. Study on the control technology of optical solitons in optical fibers. Nonlinear Dyn 86, 1069–1073 (2016). https://doi.org/10.1007/s11071-016-2947-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2947-2

Keywords

Navigation