Skip to main content

Advertisement

Log in

Modeling of geometric, material and damping nonlinearities in piezoelectric energy harvesters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The performance of piezoelectric energy harvesters (PEHs) operating in the anticipated vibration environments depends upon various nonlinearities existing in electromechanical dynamic system. In this paper, the influence of geometric, material and damping nonlinearities on the dynamic response of PEH is investigated. So far, the nonlinear geometric finite element analysis has not been used for analyzing PEHs. Moreover, the criterion for inclusion/exclusion of geometric nonlinearity in analyzing PEHs is not studied in detail. In this paper, firstly, the finite element modeling is used for analyzing the effect of geometric nonlinearity for low-frequency vibration sources. Simulations are carried out using ANSYS for different PEH configurations to assess the influence of geometric nonlinearity on harvester’s performance, and a parameter is proposed to determine the inclusion/exclusion of geometric nonlinearity in the analyzing PEHs. Subsequently, a nonlinear electromechanical model considering material and damping nonlinearities is derived for a cantilever-type PEH which uses macro-fiber composite (MFC) for power generation. In the earlier works on PZT-5A and PZT-5H, the nonlinear elastic and damping coefficients were identified by matching the analytical responses (e.g., voltage or displacement) with a set of experimental responses, which is an indirect method and might result in erroneous estimation of unknown coefficients as pointed out in the present work. In this study, the material behavior of MFC is directly obtained from tensile tests. The observed nonlinear stress–strain behavior of MFC is included in the nonlinear model to study the dynamics of the harvester. Energy harvesting experiments are conducted, and the harvester’s response is compared with the predictions from the proposed nonlinear model. The comparison shows very good agreement between the experimental and predicted responses. Moreover, the damping parameters are identified using the energy balance method, and it is shown that nonlinear damping is essential in accurate modeling of PEHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. TechNavio, TechNavio Announces the Publication of its Research Report-Global Industrial Wireless Sensor Networks (IWSN) Market 2012–2016. http://www.technavio.com/pressrelease/technavio-announces-publication-its-re-search-report-global-industrial-wireless-sensor. Accessed 9 Dec 2015

  2. Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)

    Article  Google Scholar 

  3. Sodano, H., Park, G., Inman, D.: Estimation of electric charge output for piezoelectric energy harvesting. Strain 40(2), 49–58 (2004)

    Article  Google Scholar 

  4. DuToit, N., Wardle, B., Kim, S.: Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71(1), 121–160 (2005)

    Article  Google Scholar 

  5. Hagwood, N.W., Chung, W.H., Von Flowtow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1(3), 327–354 (1990)

    Article  Google Scholar 

  6. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)

    Article  Google Scholar 

  7. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18(2), 025009 (2009)

    Article  Google Scholar 

  8. Yu, S., He, S., Li, W.: Theoretical and experimental studies of beam bimorph piezoelectric power harvesters. J. Mech. Mater. Struct. 5(3), 427–445 (2010)

    Article  MathSciNet  Google Scholar 

  9. Yang, Y., Tang, L.: Equivalent circuit modeling of piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 20(18), 2223–2235 (2009)

    Article  Google Scholar 

  10. Arafa, M., Akl, W., Aladwani, A., Aldraihem, O., Baz, A.: Experimental implementation of a cantilevered piezoelectric energy harvester with a dynamic magnifier. In: Ghasemi-Nejhad, M.N. (ed.) Active and Passive Smart Structures and Integrated Systems 2011, SPIE Proceedings, vol. 7977, p. 79770Q. San Diego, California (2011)

  11. Abdelkefi, A., Barsallo, N., Tang, L., Yang, Y., Hajj, M.R.: Modeling, validation, and performance of low-frequency piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25(12), 1429–1444 (2013)

    Article  Google Scholar 

  12. Von Wagner, U., Hagedorn, P.: Piezo-beam systems subjected to weak electric field: experiments and modelling of non-linearities. J. Sound Vib. 256(5), 861–872 (2002)

    Article  Google Scholar 

  13. Birman, V., Suhir, E.: Effect of Material’s Nonlinearity on the Mechanical Response of some Piezoelectric and Photonic Systems. In: Suhir, E., Lee, Y.C., Wong, C.P. (eds.) Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, pp. A667–A699. Springer, US (2007)

  14. Stanton, S.C., Erturk, A., Mann, B.P., Dowell, E.H., Inman, D.J.: Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 23(2), 183–199 (2012)

    Article  Google Scholar 

  15. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Resonant manifestation of intrinsic nonlinearity within electroelastic micropower generators. Appl. Phys. Lett. 97(25), 254101 (2010)

    Article  Google Scholar 

  16. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108(7), 074903 (2010)

    Article  Google Scholar 

  17. Mak, K.H., Popov, A.A., McWilliam, S.: Experimental model validation for a nonlinear energy harvester incorporating a bump stop. J. Sound Vib. 331(11), 2602–2623 (2012)

    Article  Google Scholar 

  18. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67(2), 1147–1160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leadenham, S., Erturk, A.: Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dyn. 79(3), 1727–1743 (2014)

    Article  Google Scholar 

  20. Upadrashta, D., Yang, Y.: Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction. Smart Mater. Struct. 24(4), 045042 (2015)

    Article  Google Scholar 

  21. Kulkarni, S.A., Bajoria, K.M.: Large deformation analysis of piezolaminated smart structures using higher-order shear deformation theory. Smart Mater. Struct. 16(5), 1506 (2007)

    Article  Google Scholar 

  22. ANSYS\(\textregistered \) Academic Research, Release 14.0, Help System, SOLID186, ANSYS, Inc

  23. ANSYS\(\textregistered \) Academic Research, Release 14.0, Help System, SOLID226, ANSYS, Inc

  24. ANSYS\(\textregistered \) Academic Research, Release 14.0, Help System, CIRCU94, ANSYS, Inc

  25. ANSYS\(\textregistered \) Academic Research, Release 14.0, Help System, DAMPING, ANSYS, Inc

  26. ANSYS\(\textregistered \) Academic Research, Release 14.0, Help System, NLGEOM, ANSYS, Inc

  27. Roundy, S., Wright, P.K., Rabaey, J.: A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  28. Reilly, E.K., Miller, L.M., Fain, R., Wright, P.: A study of ambient vibrations for piezoelectric energy conversion. In: Proceedings of the Power-MEMS, pp. 312–315, Washington, DC, 1–4 Dec (2009)

  29. Harb, A.: Energy harvesting: state-of-the-art. Renew. Energy 36(10), 2641–2654 (2011)

    Article  Google Scholar 

  30. Elvin, N.G., Elvin, A.A.: Large deflection effects in flexible energy harvesters. J. Intell. Mater. Syst. Struct. 23(13), 1475–1484 (2012)

  31. Upadrashta, D., Yang, Y., Tang, L.: Material strength consideration in the design optimization of nonlinear energy harvester. J. Intell. Mater. Syst. Struct. 26(15), 1980–1994 (2014)

    Article  Google Scholar 

  32. Patel, R., McWilliam, S., Popov, A.A.: Optimization of piezoelectric cantilever energy harvesters including non-linear effects. Smart Mater. Struct. 23(8), 085002 (2014)

    Article  Google Scholar 

  33. Goldschmidtboeing, F., Eichhorn, C., Wischke, M., Kroener, M., Woias, P.: The influence of ferroelastic hysteresis on mechanically excited PZT cantilever beams. In: Proceedings of the 11th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, pp. 114–117. PowerMEMS, Seoul, Korea (2011)

  34. Williams, R.B., Inman, D.J., Schultz, M.R., Hyer, M.W., Wilkie, W.K.: Nonlinear tensile and shear behavior of macro fiber composite actuators. J. Compos. Mater. 38(10), 855–869 (2004)

    Article  Google Scholar 

  35. Preumont, A.: Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  36. Nashif, A.D., Jones, D.I.G., Henderson, J.P.: Vibration Damping. Wiley, New York (1985)

    Google Scholar 

  37. Liang, J.W., Feeny, B.F.: Balancing energy to estimate damping parameters in forced oscillators. J. Sound Vib. 295(3), 988–998 (2006)

    Article  Google Scholar 

  38. Liang, J.W.: Damping estimation via energy-dissipation method. J. Sound Vib. 307(1), 349–364 (2007)

    Article  Google Scholar 

  39. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, New York (2011)

    Book  Google Scholar 

  40. Zhao, L., Tang, L., Yang, Y.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22(12), 125003 (2013)

    Article  Google Scholar 

  41. Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior application to Langevin transducer. J. Phys. III 7(6), 1197–1208 (1997)

    Google Scholar 

  42. Wang, Q.M., Zhang, Q., Xu, B., Liu, R., Cross, L.E.: Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J. Appl. Phys. 86(6), 3352–3360 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding support from Office of Naval Research, Washington, DC, under the Grant No. N62909-13-1-N202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowen Yang.

Appendix

Appendix

See Fig. 11.

Fig. 11
figure 11

Representation of transverse distances of various material layers from neutral axis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Upadrashta, D. Modeling of geometric, material and damping nonlinearities in piezoelectric energy harvesters. Nonlinear Dyn 84, 2487–2504 (2016). https://doi.org/10.1007/s11071-016-2660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2660-1

Keywords

Navigation