Skip to main content
Log in

Analysis of 4D autonomous system with volume-expanding phase space

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the dynamics of four-dimensional autonomous oscillator with antiparallel diodes. A rare phenomenon of volume-expanding phase space is observed from the proposed model, and the only equilibrium point at the origin is found to be a repeller. Systems of this kind pave the way for the better understanding of repellers. In addition, the oscillator possesses extremely rich dynamical behaviors, including 2-tori, 3-tori (triple tori), limit cycles, chaos and hyperchaos. These dynamical behaviors are characterized with the help of the Lyapunov spectrum, bifurcation diagram, recurrence analysis, Poincaré surface of section, 0–1 test etc., Period doubling and torus breakdown to chaos are the predominant routes observed in the system for different parametric choices. The results of the real-time circuit are quite compatible with the numerical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cogn. 2(2), 81–130 (2004)

    Google Scholar 

  3. Smaoui, N., Karouma, A., Zribi, M.: Adaptive synchronization of hyperchaotic chen systems with application to secure communication. Int. J. Innov. Comput. Inf. Control 9, 1127–1144 (2013)

    Google Scholar 

  4. Zak, M.: Terminal chaos for information processing in neurodynamics. Biol. Cybern. 64, 343–351 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Olsen, L.F., Degn, H.: Chaos in biological systems. Q. Rev. Biophys. 18, 165–225 (1985)

    Article  Google Scholar 

  6. Olasunkanmi, I.O., Uchechukwu, E.V., Abdulahi, N.N., Ali, Emad: Control and synchronization of chaos in biological systems via backstepping design. Int. J. Nonlinear Sci. 11, 121–128 (2011)

  7. Epstein, I.R., Showalter, K.: Nonlinear chemical dynamics: oscillations, patterns and chaos. J. Phys. Chem 100, 13132–13147 (1996)

    Article  Google Scholar 

  8. Hudson, J.L., Mankin, J.C.: Chaos in the Belousov–Zhabotinskii reaction. J. Chem. Phys 74, 6171 (1981)

    Article  Google Scholar 

  9. Tamasevicius, A., Cenys, A.: Synchronizing hyperchaos with a single variable. Phys. Rev. E 55, 297–299 (1997)

    Article  Google Scholar 

  10. Buscarino, A., Fortuna, L., Frasca, M.: Experimental robust synchronization of hyperchaotic circuits. Phys. D 238, 1917–1922 (2009)

    Article  MATH  Google Scholar 

  11. Itoh, M., Chua, L.O.: Reconstruction and synchronization of hyperchaotic circuits via one state variable. Int. J. Bifurcat. Chaos 12, 2069–2085 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rossler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tamasevicius, A., Namajunas, A., Cenys, A.: Simple 4D chaotic oscillator. Electron. Lett. 32, 957–958 (1996)

    Article  Google Scholar 

  14. Tamasevicius, A., Cenys, A.: Hyperchaos in dynamical systems with a monoactive degree of freedom. Chaos Solitons Fractals 9, 115–119 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barbara, C., Silvano, C.: Hyperchaotic behaviour of two bidirectionally coupled Chua’s circuit. Int. J. Circuit Theory Appl. 30, 625–637 (2002)

  16. Mykolaitis, G., Tamasevicius, A., Cenys, A., Bumeliene, S., Anagnostopoulos, A.N., Kalkan, N.: Very high and ultrahigh frequency hyperchaotic oscillators with delay line. Chaos Solitons Fractals 17, 343–347 (2003)

    Article  MATH  Google Scholar 

  17. El-Sayed, A.M.A., Nour, H.M., Elsaid, A., Elsonbaty, A.: Dynamical behaviors of a new hyperchaotic system with one nonlinear term. Electron. J. Math. Anal. Appl. 1, 1–18 (2015)

    MathSciNet  Google Scholar 

  18. Kengne, J., Chedjou, J.C., Fonzin Fozin, T.: On the analysis of semiconductor diode-based chaotic and hyperchaotic generators-a case study. Nonlinear Dyn. 77, 373–386 (2014)

    Article  MathSciNet  Google Scholar 

  19. Mohammadi, A., Shayegh, F., Abdipour, A., Mirzavand, R.: Direct conversion EHM transceivers design for millimeter-wave wireless applications. EURASIP J. Wirel. Commun. Netw. 1, 1–9 (2007)

  20. Lindberg, E., Murali, K., Tamasevicius, A.: Hyperchaotic circuit with damped harmonic oscillators. In: IEEE International Symposium On Circuits And Systems. pp. 759–762 (2001)

  21. Hellen, E.H., Lanctot, M.J.: Nonlinear damping of the LC circuit using antiparallel diodes. Am. J. Phys. 75, 326–330 (2007)

    Article  Google Scholar 

  22. Mohyuddin, W., kim, K.W., Choi, H.C.: Compact wideband antiparallel diode frequency triplers utilizing planar transitions. Int. J. Antennas Propag. 2015, 1–7 (2015)

  23. Kauffman, L., Sabelli, H.: Mathematical bios. Kybern. Int. J. Syst. Cybern. 31, 1418–1428 (2002)

    Article  Google Scholar 

  24. Wang, B., Dong, X.: Secure communication based on a hyperchaotic system with disturbances. Math. Probl. Eng. 2015, 616137 (2015)

    MathSciNet  Google Scholar 

  25. Ottino, J.M., Muzzion, F.J., Tjahjadi, M., Franjione, J.G., Jana, S.C., Kusch, H.A.: Chaos, symmetry and self similarity: exploring order and disorder in mixing processes. Science 257, 754–760 (1992)

    Article  Google Scholar 

  26. Wang, J., Chen, Z., Yuan, Z.: The generation and analysis of a new four-dimensional hyperchaotic system. Int. J. Mod. Phys. c 18, 1013–1024 (2007)

    Article  MATH  Google Scholar 

  27. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Franceschnin, V.: A Feigenbaum sequence of bifurcations in the Lorenz model. J. Stat. Phys. 22, 397–406 (1980)

    Article  MathSciNet  Google Scholar 

  29. Hanias, M.P., Avgerinos, Z., Tombras, G.S.: Period doubling, Feigenbaum constant and time series prediction in an experimental chaotic RLD circuit. Chaos Solitons Fractals 40, 1050–1059 (2009)

    Article  Google Scholar 

  30. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica 16D, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Facchini, A., Mocenni, C., Marwan, N., Vicino, A., Tiezzi, E.: Nonlinear time series analysis of dissolved oxygen in the Orbettello Laggon (Italy). Ecol. Model. 203, 339–348 (2007)

    Article  Google Scholar 

  32. Marwan, N.: Cross recurrence plot toolbox for MATLAB, ver.5.17(R29.1). http://tocsy.pik-potsdam.de/CRPtoolbox/. Accessed 2015-01027

  33. Marwan, N., Romano, M.C., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)

    Article  MathSciNet  Google Scholar 

  34. Bradley, E., Mantilla, R.: Recurrence plots and unstable periodic orbits. Chaos Interdiscip. J. Nonlinear Sci. 12(3), 596–600 (2002)

    Article  Google Scholar 

  35. Biham, O., Wenzel, W.: Characterization of unstable periodic orbits in chaotic attractors and repellers. Phys. Rev. Lett. 63, 819–822 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ke-Hui, S., Xuan, L., Cong-Xu, Z.: The 0–1 test algorithm for chaos and its applications. Chin. Phys. B 19, 110510-1-7 (2010)

    Google Scholar 

Download references

Acknowledgments

A.J would like to thank DST for the financial assistance in the form of DST INSPIRE Fellowship. P.P acknowledges University Grants Commission (UGC) for the financial support for this research work through a major research project F. No.41-961/2012(SR) dt. 0172012. S.S. acknowledges University Grants Commission (UGC) for the financial assistance through RFSMS scheme and K.T. acknowledges DST, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Philominathan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeevarekha, A., Sabarathinam, S., Thamilmaran, K. et al. Analysis of 4D autonomous system with volume-expanding phase space. Nonlinear Dyn 84, 2273–2284 (2016). https://doi.org/10.1007/s11071-016-2644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2644-1

Keywords

Navigation