Skip to main content
Log in

A practical nonlinear dynamic framework for solving a class of fractional programming problems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a high-performance dynamic optimization scheme to solve a class of fractional programming (FP) problems. The main idea is to convert the FP problem into an equivalent convex second-order cone programming problem. A neural network model based on a dynamic model is then constructed for solving the obtained convex programming problem. By employing a credible Lyapunov function approach, it is shown that the proposed neural network model is stable in the sense of Lyapunov and is globally convergent to an exact optimal solution of the original optimization problem. A block diagram of the model is also given. Several illustrative examples are provided to show the efficiency of the proposed method in this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Craven, B.D.: Fractional Programming in Sigma Series in Applied Mathematics. Helderman Verlag, Berlin (1988)

    Google Scholar 

  2. Schaible, S., Ibaraki, T.: Fractional programming. Eur. J. Oper. Res. 12, 325–338 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Busygin, S., Prokopyev, O.A., Pardalos, P.M.: Feature selection for consistent biclustering via fractional 0–1 programming. J. Comb. Optim. 10, 7–21 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu, H., Fan, N., Pardalos, P.M.: Generalized lagrange function and generalized weak saddle points for a class of multiobjective fractional optimal control problems. J. Optim. Theory Appl. 154, 370–381 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Pardalos, P.M., Phillips, A.: Global optimization of fractional program. J. Glob. Optim. 1, 173–182 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Schaible, S.: Fractional Programming. Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  7. Stancu-Minasian, I.M.: Fractional Programming: Theory Methods and Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Book  MATH  Google Scholar 

  8. Stancu-Minasian, I.M.: Fractional programming: theory methods and applications. Econ. Comput. Econ. Cybern. Stud. Res. 14, 69–86 (1980)

    MathSciNet  Google Scholar 

  9. Stancu-Minasian, I.M.: A fifth bibliography of fractional programming. Optimization 45, 343–367 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Stancu-Minasian, I.M.: A sixth bibliography of fractional programming. Optimization 55, 405–428 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tank, D.W., Hopfield, J.J.: Simple neural optimization networks: an A/D converter signal decision circuit and a linear programming circuit. IEEE Trans. Circuits Syst. 33, 533–541 (1986)

    Article  Google Scholar 

  12. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE Trans. Circuits Syst. 35, 554–562 (1988)

    Article  MathSciNet  Google Scholar 

  13. Rodriguez-Vazquez, A., Dominguez-Castro, R., Rueda, A., Huertas, J.L., Sanchez-Sinencio, E.: Nonlinear switched-capacitor neural networks for optimization problems. IEEE Trans. Circuits Syst. 37, 384–397 (1990)

    Article  MathSciNet  Google Scholar 

  14. Chen, K.Z., Leung, Y., Leung, K.S., Gao, X.B.: A neural network for nonlinear programming problems. Neural Comput. Appl. 11, 103–111 (2002)

    Article  Google Scholar 

  15. Effati, S., Nazemi, A.R.: Neural network models and its application for solving linear and quadratic programming problems. Appl. Math. Comput. 172, 305–331 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Effati, S., Ghomashi, A., Nazemi, A.R.: Application of projection neural network in solving convex programming problems. Appl. Math. Comput. 188, 1103–1114 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Friesz, T.L., Bernstein, D.H., Mehta, N.J., Tobin, R.L., Ganjlizadeh, S.: Day-to-day dynamic network disequilibria and idealized traveler information systems. Oper. Res. 42, 1120–1136 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forti, M., Nistri, P., Quincampoix, M.: Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans. Circuits Syst. I Regul. Pap. 51, 1741–1754 (2004)

    Article  MathSciNet  Google Scholar 

  19. Gao, X.: A novel neural network for nonlinear convex programming. IEEE Trans. Neural Netw. 15, 613–621 (2004)

    Article  Google Scholar 

  20. Ko, C.-H., Chen, J.-S., Yang, C.-V.: Recurrent neural networks for solving second-order cone programs. Neurocomputing 74, 3646–3653 (2011)

    Article  Google Scholar 

  21. Leung, Y., Chen, K., Gao, X.: A high-performance feedback neural network for solving convex nonlinear programming problems. IEEE Trans. Neural Netw. 14, 1469–1477 (2003)

  22. Liang, X.B., Wang, J.: A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bounded constraints. IEEE Trans. Neural Netw. 11, 1251–1262 (2000)

    Article  Google Scholar 

  23. Liao, L.Z., Qi, H.D.: A neural network for the linear complementarity problem. Math. Comput. Model. 29(3), 9–18 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lillo, W.E., Loh, M.H., Hui, S., Zăk, S.H.: On solving constrained optimization problems with neural networks : a penalty method approach. IEEE Trans. Neural Netw. 4, 931–939 (1993)

    Article  Google Scholar 

  25. Malek, A., Hosseinipour-Mahani, N., Ezazipour, S.: Efficient recurrent neural network model for the solution of general nonlinear optimization problems. Optim. Methods Softw. 25, 1–18 (2010)

    Article  MathSciNet  Google Scholar 

  26. Mu, X., Liu, S., Zhang, Y.: A neural network algorithm for second-order conic programming. In: Proceedings of the Second International Symposium on Neural Networks, Chongqing China Part II. pp. 718-724 (2005)

  27. Nazemi, A.R.: A dynamical model for solving degenerate quadratic minimax problems with constraints. J. Comput. Appl. Math. 236, 1282–1295 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nazemi, A.R.: A dynamic system model for solving convex nonlinear optimization problems. Commun. Nonlinear Sci. Numer. Simul. 17, 1696–1705 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nazemi, A.R.: Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng. Appl. Artif. Intell. 26, 685–696 (2013)

    Article  Google Scholar 

  30. Nazemi, A.R., Omidi, F.: A capable neural network model for solving the maximum flow problem. J. Comput. Appl. Math. 236, 3498–3513 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nazemi, A.R.: A neural network model for solving convex quadratic programming problems with some applications. Eng. Appl. Artif. Intell. 32, 54–62 (2014)

    Article  Google Scholar 

  32. Nazemi, A.R., Omidi, F.: An efficient dynamic model for solving the shortest path problem. Transp. Res. Part C Emerg. Technol. 26, 1–19 (2013)

    Article  Google Scholar 

  33. Nazemi, A.R., Sharifi, E.: Solving a class of geometric programming problems by an efficient dynamic model. Commun. Nonlinear Sci. Numer. Simul. 18, 692–709 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nazemi, A.R., Effati, S.: An application of a merit function for solving convex programming problems. Comput. Ind. Eng. 66, 212–221 (2013)

    Article  Google Scholar 

  35. Nazemi, A.R., Nazemi, M.: A gradient-based neural network method for solving strictly convex quadratic programming problems. Cogn. Comput. 6, 484–495 (2014)

    Article  Google Scholar 

  36. Sun, J., Chen, J.-S., Ko, C.-H.: Neural networks for solving second-order cone constrained variational inequality problem. Comput. Optim. Appl. 51, 623–648 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sun, J., Zhang, L.: A globally convergent method based on Fischer–Burmeister operators for solving second-order cone constrained variational inequality problems. Comput. Math. Appl. 58, 1936–1946 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tao, Q., Cao, J., Xue, M., Qiao, H.: A high performance neural network for solving nonlinear programming problems with hybrid constraints. Phys. Lett. A 288, 88–94 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, J., Hu, Q., Jiang, D.: A Lagrangian neural network for kinematic control of redundant robot manipulators. IEEE Trans. Neural Netw. 10, 1123–1132 (1992)

    Article  Google Scholar 

  40. Xia, Y.: A new neural network for solving linear and quadratic programming problems. IEEE Trans. Neural Netw. 7(6), 1544–1547 (1996)

    Article  Google Scholar 

  41. Xia, Y., Wang, J.: A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans. Neural Netw. 16, 379–386 (2005)

    Article  Google Scholar 

  42. Xia, Y., Wang, J.: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 51(7), 1385–1394 (2004)

    Article  MathSciNet  Google Scholar 

  43. Xia, Y., Leung, H., Wang, J.: A general projection neural network for solving monotone variational inequalities and related optimization problems. IEEE Trans. Neural Netw. 15(2), 318–328 (2004)

    Article  Google Scholar 

  44. Xia, Y., Leung, H., Wang, J.: A projection neural network and its application to constrained optimization problems. IEEE Trans. Circuits Syst. I Regul. Pap. 49, 447–458 (2002)

    Article  MathSciNet  Google Scholar 

  45. Xia, Y., Feng, G.: A new neural network for solving nonlinear projection equations. Neural Netw. 20, 577–589 (2007)

    Article  MATH  Google Scholar 

  46. Xia, Y., Wang, J., Fok, L.M.: Grasping-force optimization for multifingered robotic hands using a recurrent neural network. IEEE Trans. Robot. Autom. 20(3), 549–554 (2004)

    Article  Google Scholar 

  47. Xue, X., Bian, W.: A project neural network for solving degenerate convex quadratic program. Neural Netw. 70, 2449–2459 (2007)

    Google Scholar 

  48. Xue, X., Bian, W.: Sub gradient-based neural network for nonsmooth convex optimization problems. IEEE Trans. Circuits Syst. I Regul. Pap. 55, 2378–2391 (2008)

    Article  MathSciNet  Google Scholar 

  49. Yanga, Y., Cao, j: The optimization technique for solving a class of non-differentiable programming based on neural network method. Nonlinear Anal. 11, 1108–1114 (2010)

    Article  Google Scholar 

  50. Yang, Y., Xu, X.: The Projection Neural Network for Solving Convex Nonlinear Programming. Springer, Berlin (2007)

    Book  Google Scholar 

  51. Yang, Y., Cao, J.: A feedback neural network for solving convex constraint optimization problems. Appl. Math. Comput. 201, 340–350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  53. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  54. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex-Optimization: Analysis, Algorithms, and Engineering Applications. SIAM, Philadelphia (2001)

  55. Effati, S., Moghadam, M.M.: Conversion of some classes of fractional programming to second-order cone programming and solving it by potential reduction interior point method. Appl. Math. Comput. 181, 563–578 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  56. Faraut, J., Konyi, A.: Analysis on Symmetric Cones, Oxford Mathematical Monographs. Oxford University Press, New York (1994)

    Google Scholar 

  57. Benson, H.Y., Vanderbei, R.J.: Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming. Math. Program. Ser. B 95, 279–302 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  58. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, New York (1993)

    MATH  Google Scholar 

  59. Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  60. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  61. Avriel, M.: Nonlinear Programming: Analysis and Methods. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  62. Fukushima, M.: Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems. Math. Program. 53, 99–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  63. Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Walter de Gruyter, Berlin (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazemi, A., Tahmasbi, N. A practical nonlinear dynamic framework for solving a class of fractional programming problems. Nonlinear Dyn 82, 1093–1108 (2015). https://doi.org/10.1007/s11071-015-2219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2219-6

Keywords

Navigation