Skip to main content

Advertisement

Log in

New generalized Halanay inequalities with applications to stability of nonlinear non-autonomous time-delay systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a general class of Halanay-type non-autonomous functional differential inequalities is considered. A new concept of stability, namely global generalized exponential stability, is proposed. We first prove some new generalizations of the Halanay inequality. We then derive explicit criteria for global generalized exponential stability of nonlinear non-autonomous time-delay systems based on our new generalized Halanay inequalities. Numerical examples and simulations are provided to illustrate the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  2. Erneux, T.: Applied Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

  3. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York (2011)

    Book  MATH  Google Scholar 

  4. Gil’, M.I.: Stability of Vector Differential Delay Equations. Springer, Basel (2013)

    Book  MATH  Google Scholar 

  5. Trinh, H., Fernando, T.: Functional Observers for Dynamical Systems. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  6. Yan, X.G., Spurgeon, S.K., Edwards, C.: Decentralised stabilisation for nonlinear time delay interconnected systems using static output feedback. Automatica 49(2), 633–641 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adimy, M., Crauste, F., Abdllaoui, AEl: Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamics. C. R. Mathematique 348(7), 373–377 (2010)

    Article  MATH  Google Scholar 

  8. Colijn, C., Mackey, M.C.: Bifurcation and bistability in a model of hematopoietic regulation. SIAM J. Appl. Dyn. Syst. 6(2), 378–394 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yuan, Y., Zhao, X.Q.: Global stability for non-monotone delay equations (with application to a model of blood cell production). J. Differ. Equ. 252(3), 2189–2209 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liz, E., Röst, G.: Global dynamics in a commodity market model. J. Math. Anal. Appl. 398(2), 707–714 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hien, L.V.: Global asymptotic behaviour of positive solutions to a non-autonomous Nicholson’s blowflies model with delays. J. Biol. Dyn. 8(1), 135–144 (2014)

    Article  MathSciNet  Google Scholar 

  12. Liu, B., Lu, W., Chen, T.: Generalized Halanay inequalities and their applications to neural networks with unbounded time-varying delays. IEEE Trans. Neural Netw. 22(9), 1508–1513 (2011)

    Article  Google Scholar 

  13. Liu, B., Lu, W., Chen, T.: Stability analysis of some delay differential inequalities with small delays and its applications. Neural Netw. 33, 1–6 (2012)

    Article  Google Scholar 

  14. Hien, L.V., Phat, V.N.: Exponential stability and stabilization of a class of uncertain linear time-delay systems. J. Franklin Inst. 346(6), 611–625 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kharitonov, V.L.: Time-Delay Systems: Lyapunov Functionals and Matrices. Birkhäuser, Berlin (2013)

    Book  Google Scholar 

  16. Kwon, O.M., Park, J.H., Lee, S.M., Cha, E.J.: New augmented Lyapunov–Krasovskii functional approach to stability analysis of neural networks with time-varying delays. Nonlinear Dyn. 76(1), 221–236 (2014)

    Article  MathSciNet  Google Scholar 

  17. Phat, V.N., Hien, L.V.: An application of Razumikhin theorem to exponential stability for linear nonautonomous systems with time-varying delay. Appl. Math. Lett. 22(9), 1412–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Trinh, H., Aldeen, M.: On robustness and stabilization of linear systems with delayed nonlinear perturbations. IEEE Trans. Auto. Control 42(7), 1005–1007 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: Application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  Google Scholar 

  20. Ngoc, P.H.A.: Novel criteria for exponential stability of functional differential equations. Proc. Am. Math. Soc. 141(9), 3083–3091 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ngoc, P.H.A.: Stability of positive differential systems with delay. IEEE Trans. Autom. Control 58(1), 203–209 (2013)

    Article  Google Scholar 

  22. Wen, L., Yu, Y., Wang, W.: Generalized Halanay inequalities for dissipativity of Volterra functional differential equations. J. Math. Anal. Appl. 347(1), 169–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, L., Ding, X.: Dissipativity of \(\theta \)-methods for a class of nonlinear neutral delay integro-differential equations. Int. J. Comput. Math. 89(15), 2029–2046 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, T., Wang, L.: Power-rate global stability of dynamical systems with unbounded time-varying delays. IEEE Trans. Circuits Syst. II 54(8), 705–709 (2007)

    Article  Google Scholar 

  25. Berezansky, L., Diblík, J., Svoboda, Z., Šmarda, Z.: Simple uniform exponential stability conditions for a system of linear delay differential equations. Appl. Math. Comput. 250, 605–614 (2015)

    Article  MathSciNet  Google Scholar 

  26. Zhou, L.: Dissipativity of a class of cellular neural networks with proportional delays. Nonlinear Dyn. 73(3), 1895–1903 (2013)

    Article  MATH  Google Scholar 

  27. Zhou, L.: Global asymptotic stability of cellular neural networks with proportional delays. Nonlinear Dyn. 77(1), 41–47 (2014)

    Article  Google Scholar 

  28. Hien, L.V., Son, D.T.: Finite-time stability of a class of non-autonomous neural networks with heterogeneous proportional delays. Appl. Math. Comput. 251, 14–23 (2015)

    Article  MathSciNet  Google Scholar 

  29. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  30. Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order Systems and Controls. Springer, London (2010)

    Book  MATH  Google Scholar 

  31. Wang, Z., Yang, D., Ma, T., Sun, N.: Stability analysis for nonlinear fractional-order systems based on comparison principle. Nonlinear Dyn. 75(2), 387–402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Editor-in-Chief, Associate Editor(s) and Anonymous Reviewers for their valuable and encouraging comments and helpful suggestions to improve the present paper. This work was partially supported by the ARC Discovery (Grant DP130101532) and the NAFOSTED of Vietnam (Grant 101.01-2014.35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Hien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hien, L.V., Phat, V.N. & Trinh, H. New generalized Halanay inequalities with applications to stability of nonlinear non-autonomous time-delay systems. Nonlinear Dyn 82, 563–575 (2015). https://doi.org/10.1007/s11071-015-2176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2176-0

Keywords

Mathematics Subject Classification

Navigation