Skip to main content
Log in

Finite-time containment control without velocity and acceleration measurements

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the distributed finite-time containment control for a group of mobile agents modeled by double-integrator dynamics under multiple dynamic leaders with bounded unknown acceleration inputs. A class of distributed finite-time containment protocols is proposed without relying velocity and acceleration measurements. This kind of protocols can drive the states of the followers to track the convex hull spanned by those of the leaders in finite time under the constraint that the leaders’ acceleration inputs are unknown but bounded for all the followers. Further, by computing the value of the Lyapunov function at the initial point, the finite settling time can also be theoretically estimated for the second-order finite-time containment control problems. Finally, the effectiveness of the results is illustrated by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hong, Y., Chen, G.R., Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks. Automatica 44, 846–850 (2008)

  2. Jadbbaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)

    Article  Google Scholar 

  3. Sun, W., Yu, X.H., Lv, J.H., Chen, S.H.: Synchronization of coupled harmonic oscillators with random noises. Nonlinear Dyn. 79, 473–484 (2015)

    Article  Google Scholar 

  4. Ji, M., Ferrari-Trecate, J., Egerstedt, M., Buffa, A.Y.: Containment control in mobile networks. IEEE Trans. Autom. Control 53, 1972–1975 (2008)

    Article  MathSciNet  Google Scholar 

  5. Li, Z.K., Duan, Z.S., Chen, G.R., Huang, L.: Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I: Regul. Pap. 57, 213–224 (2010)

    Article  MathSciNet  Google Scholar 

  6. Ren, W., Beard, R., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27, 71–82 (2007)

    Article  Google Scholar 

  7. Xiang, L.Y., Chen, F., Chen, G.R.: Synchronized regions of pinned complex networks: spectral analysis. Nonlinear Dyn. 78, 1609–1628 (2014)

    Article  MathSciNet  Google Scholar 

  8. Saber, R.O., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49, 1520–1533 (2004)

    Article  Google Scholar 

  9. Ren, W., Beard, R.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  10. Xiao, F., Wang, L., Chen, J., Gao, Y.: Finite-time formation control for multi-agent systems. Automatica 45, 2605–2611 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu, W., Chen, G.R., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46, 1089–1095 (2007)

    Article  MathSciNet  Google Scholar 

  12. Cao, M., Morse, A.S., Anderson, B.D.O.: Agreeing asynchronously. IEEE Trans. Autom. Control 53, 1826–1838 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ren, W., Beard, R.: Distributed Consensus Multi-vehicle Cooperative Control. Springer, London (2008)

    Book  MATH  Google Scholar 

  14. Ren, W.: Multi-vehicle consensus with a time-varying reference state. Syst. Control Lett. 56, 474–483 (2007)

    Article  MATH  Google Scholar 

  15. Qian, Y.F., Wu, X.Q., Lv, J.H., Lu, J.A.: Consensus of second-order multi-agent systems with nonlinear dynamics and time delay. Nonlinear Dyn. 78, 495–503 (2014)

    Article  Google Scholar 

  16. Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57, 33–48 (2012)

    Article  MathSciNet  Google Scholar 

  17. Notarstefano, G., Egerstedt, M., Haque, M.: Containment in leader–follower networks with switching communication topologies. Automatica 47, 1035–1040 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lou, Y., Hong, Y.: Multi-leader set coordination of multi-agent systems with random switching topologies. In: Proceedings IEEE Conference Decision Control, pp. 3820–3825 (2010)

  19. Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: algorithms and experiments. IEEE Trans. Control Syst. Technol. 19, 929–938 (2011)

    Article  Google Scholar 

  20. Meng, Z., Ren, W., You, Z.: Distributed finite-time attitude containment control for multiple rigid bodies. Automatica 46, 2092–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependent graph laplacian. IEEE Trans. Autom. Control 51, 116–120 (2006)

    Article  MathSciNet  Google Scholar 

  22. Li, Z.K., Duan, Z.S., Chen, G.R.: On \({\rm H}_\infty \) and \({\rm H}_2\) performance regions of multi-agent systems. Automatica 47, 797–803 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Olfati-Saber, R.: Ultrafast consensus in small-world networks. In: Proceedings American Control Conference, pp. 2371–2378 (2005)

  24. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53, 65–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao, Y., Duan, Z.S., Wen, G.H., Chen, G.R.: Distributed \({\rm H}_\infty \) consensus of multi-agent systems: a performance region-based approach. Int. J. Control 85, 332–341 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cortes, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42, 1993–2000 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, X., Hong, Y.: Finite-time consensus for multi-agent networks with second-order agent dynamics. In: Proceedings the 17th World Congress, IFAC, pp. 15185–15190 (2008)

  28. Yang, X.X., Wu, Z.Y., Cao, J.D.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73, 2313–2327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cao, Y., Ren, W., Chen, F., Zong, G.: Finite-time consensus of multi-agent networks with inherent nonlinear dynamics under an undirected interaction graph. In: Proceedings American Control Conference, pp. 4020–4025 (2011)

  30. Cao, Y., Ren, W., Meng, Z.: Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. Syst. Control Lett. 59, 522–529 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47, 1706–1712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Y.F., Geng, Z.Y.: Finite-time optimal formation tracking control of vehicles in horizontal plane. Nonlinear Dyn. 76, 481–495 (2014)

  33. Zhao, L., Jia, Y.M.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78, 2779–2794 (2014)

    Article  Google Scholar 

  34. Davila, A., Moreno, J.A., Fridman, L.: Optimal Lyapunov function section for reaching time estimation of super twisting algorithm. In: Proceedings of the IEEE Conference of Decision Control, pp. 8405–8410 (2009)

  35. Zhao, Y., Duan, Z.S., Wen, G.H., Zhang, Y.J.: Distributed finite-time tracking control for multi-agent systems: an observer-based approach. Syst. Control Lett. 62, 22–28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Filippov, A.F.: Differential Equations with Discontinuous Righthand Side. Kluwer, Norwell (1988)

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers for their valuable comments and constructive suggestions. This work was supported by the National Science Foundation of China under Grants 61225013, 11332001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhao.

Appendix

Appendix

The proof of Lemma 4

By choosing a symmetric matrix \(P={\left( \begin{array}{c@{\quad }c} 2y &{} -2 \\ -2 &{} 1 \\ \end{array} \right) }\), \(P\) is positive definite if \(y>2\). Then, substituting \(P\) into (3), one has

$$\begin{aligned} Q=\left( \begin{array}{c@{\quad }c} 2l_1y-4l_2-4-\varepsilon ^2 &{} \;\;\;\; -l_1+l_2-y+2 \\ -l_1+l_2-y+2&{} 1 \\ \end{array} \right) . \end{aligned}$$

Thus, \(Q>0\) if and only if there exists \(y>2\) such that \(2l_1y-4l_2-4-\varepsilon ^2-(-l_1+l_2-y+2)^2>0\), which are equivalent to

$$\begin{aligned}&y>2, \end{aligned}$$
(33)
$$\begin{aligned}&y^2-2(l_2+2)y+(l_1-l_2-2)^2+4l_2+4+\varepsilon ^2<0. \end{aligned}$$
(34)

The conditions (33) and (34) are satisfied if and only if

$$\begin{aligned}&l_2+2+\sqrt{-l_1^2+2(l_2+2)l_1-4l_2-4-\varepsilon ^2}>2, \end{aligned}$$
(35)
$$\begin{aligned}&\Delta _y\triangleq -l_1^2+2(l_2+2)l_1-4l_2-4-\varepsilon ^2>0. \end{aligned}$$
(36)

It is easy to see that (35) holds if and only if (36) and \(l_2>0\). Note that (36) is satisfied if and only if

$$\begin{aligned}&\Delta _{l_1}\triangleq l_2^2-\varepsilon ^2>0, \end{aligned}$$
(37)
$$\begin{aligned}&l_2+2-\sqrt{l_2^2-\varepsilon ^2}<l_1<l_2+2+ \sqrt{l_2^2-\varepsilon ^2}, \end{aligned}$$
(38)

which are equivalent to conditions (5) and (6). Thus, there exists a positive definite matrix \(P\) such that (3) is feasible if (5) and (6) hold.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Duan, Z. Finite-time containment control without velocity and acceleration measurements. Nonlinear Dyn 82, 259–268 (2015). https://doi.org/10.1007/s11071-015-2154-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2154-6

Keywords

Navigation