Skip to main content

Advertisement

Log in

A review of operational matrices and spectral techniques for fractional calculus

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Machado, J.A.T.: The effect of fractional order in variable structure control. Comput. Math. Appl. 64, 3340–3350 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gutierrez, R.E., Rosario, J.M., Machado, J.A.T.: Fractional order calculus: basic concepts and engineering applications. Math. Prob. Eng. (2010). Article ID 375858, 19

  3. Pinto, C.M.A., Tenreiro Machado, J.A.: Complex order van der Pol oscillator. Nonlinear Dyn. 65, 247–254 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bota, C., Caruntu, B.: Approximate analytical solutions of the fractional-order brusselator system using the polynomial least squares method. Adv. Math. Phys. (2015). Article ID 450235

  5. Liu, Y., Fang, Z., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    Article  MathSciNet  Google Scholar 

  6. Merdan, M.: On the solutions of time-fractional generalized Hirota–Satsuma coupled-KDV equation with modified Riemann–Liouville derivative by an analytical technique. Proc. Rom. Acad. A 16, 3–10 (2015)

    MathSciNet  Google Scholar 

  7. Inc, M., Kilic, B.: Classification of traveling wave solutions for time-fractional fifth-order KdV-like equation. Waves Random Complex Media 24, 393–403 (2014)

    Article  MathSciNet  Google Scholar 

  8. Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)

    Article  MathSciNet  Google Scholar 

  9. Daftardar-Gejji, V., Sukale, Y., Bhalekar, S.: A new predictor–corrector method for fractional differential equations. Appl. Math. Comput. 244, 158–182 (2014)

    Article  MathSciNet  Google Scholar 

  10. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59(5–6), 433–442 (2014)

    Google Scholar 

  11. Parvizi, M., Eslahchi, M.R., Dehghan, M.: Numerical solution of fractional advection–diffusion equation with a nonlinear source term. Numer. Algorithms 68, 601–629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nagy, A.M., Sweilam, N.H.: An efficient method for solving fractional Hodgkin–Huxley model. Phys. Lett. A 378(30), 1980–1984 (2014)

    Article  MathSciNet  Google Scholar 

  13. Sadatia, S.J., Ghaderi, R., Ranjbar, N.: Some fractional comparison results and stability theorem for fractional time delay systems. Rom. Rep. Phys. 65, 94–102 (2013)

    Google Scholar 

  14. Leo, R.A., Sicuro, G., Tempest, P.: A theorem on the existence of symmetries of fractional PDEs. C. R. Acad. Sci. Paris Ser. I 352, 219–222 (2014)

    Article  MATH  Google Scholar 

  15. Gaur, M., Singh, K.: On group invariant solutions of fractional order Burgers–Poisson equation. Appl. Math. Comput. 244, 870–877 (2014)

    Article  MathSciNet  Google Scholar 

  16. Wang, G.W., Xu, T.Z.: The improved fractional sub-equation method and its applications to nonlinear fractional partial differential equations. Rom. Rep. Phys. 66(3), 595–602 (2014)

    Google Scholar 

  17. Liu, Z., Lu, P.: Stability analysis for HIV infection of CD4+ T-cells by a fractional differential time-delay model with cure rate. Adv. Differ. Equ. 2014, 298 (2014)

    Article  Google Scholar 

  18. Huang, Q., Zhdanov, R.: Symmetries and exact solutions of the time fractional Harry–Dym equation with Riemann–Liouville derivative. Physica A 409, 110–118 (2014)

    Article  MathSciNet  Google Scholar 

  19. Takači, D., Takači, A., Takači, A.: On the operational solutions of fuzzy fractional differential equations. Frac. Calc. Appl. Anal. 17, 1100–1113 (2014)

    Google Scholar 

  20. Ghomashi, A., Salahshour, S., Hakimzadeh, A.: Approximating solutions of fully fuzzy linear systems: a financial case study. J. Intell. Fuzzy Syst. 26, 367–378 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Al-Khaled, K.: Numerical solution of time-fractional partial differential equations using sumudu decomposition method. Rom. J. Phys. 60, 99–110 (2015)

    Google Scholar 

  22. Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  23. Gao, F., Lee, X., Fei, F., Tong, H., Deng, Y., Zhao, H.: Identification time-delayed fractional order chaos with functional extrema model via differential evolution. Expert Syst. Appl. 41, 1601–1608 (2014)

    Article  Google Scholar 

  24. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equation. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guner, O., Cevikel, A.C.: A procedure to construct exact solutions of nonlinear fractional differential equations. Sci. World J. (2014). Article ID 489495, 10 pp

  26. Xie, W., Xiao, J., Luo, Z.: Existence of extremal solutions for nonlinear fractional differential equation with nonlinear boundary conditions. Appl. Math. Lett. 41, 46–51 (2015)

    Article  MathSciNet  Google Scholar 

  27. Benchohraa, M., Lazreg, J.E.: Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions. J. Math. Comput. Sci. 4, 60–72 (2014)

    Google Scholar 

  28. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Error estimate for the numerical solution of fractional reaction–subdiffusion process based on a meshless method. J. Comput. Appl. Math. 280, 14–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time–space Riesz–Caputo fractional differential equations. Appl. Math. Comput. 277, 531–540 (2014)

    Article  MathSciNet  Google Scholar 

  30. Butera, S., Paola, M.D.: Mellin transform approach for the solution of coupled systems of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 20, 32–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, X.: Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions. Appl. Math. Lett. 39, 22–27 (2015)

    Article  MathSciNet  Google Scholar 

  32. Pedas, A., Tamme, E.: Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 255, 216–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deng, J., Deng, Z.: Existence of solutions of initial value problems for nonlinear fractional differential equations. Appl. Math. Lett. (2014). doi:10.1016/j.aml.2014.02.001

    Google Scholar 

  34. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein–Gordon equations. Eng. Anal. Bound. Elem. 50, 412–434 (2015)

    Article  MathSciNet  Google Scholar 

  35. Gao, F., Lee, X., Tong, H., Fei, F., Zhao, H.: Identification of unknown parameters and orders via cuckoo search oriented statistically by differential evolution for noncommensurate fractional-order chaotic systems. Abstr. Appl. Anal. (2013). Article ID 382834

  36. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    Google Scholar 

  37. Abdelkawy, M.A., Ahmed, E.A., Sanchez, P.: A method based on Legendre pseudo-spectral approximations for solving inverse problems of parabolic types equations. Math. Sci. Lett. 4, 81–90 (2015)

    Google Scholar 

  38. Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S., Abdelkawy, M.A.: An accurate numerical technique for solving fractional optimal control problems. Proc. Rom. Acad. A 16, 47–54 (2015)

    MathSciNet  Google Scholar 

  39. Xu, Q., Hesthaven, J.S.: Stable multi-domain spectral penalty methods for fractional partial differential equations. J. Comput. Phys. 257, 241–258 (2014)

    Article  MathSciNet  Google Scholar 

  40. Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. (2015). doi:10.1016/j.jcp.2014.10.016

    Google Scholar 

  41. Doha, E.H., Bhrawy, A.H., Hafez, R.M., Abdelkawy, M.A.: A Chebyshev-Gauss-Radau scheme for nonlinear hyperbolic system of first order. Appl. Math. Inf. Sci. 8(2), 535–544 (2014)

    Article  MathSciNet  Google Scholar 

  42. Zayernouri, M., Em Karniadakis, G.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460–480 (2014)

    Article  MathSciNet  Google Scholar 

  43. Parand, K., Nikarya, M.: Application of Bessel functions for solving differential and integro-differential equations of the fractional order. Appl. Math. Model. 38, 4137–4147 (2014)

    Article  MathSciNet  Google Scholar 

  44. Doha, E.H., Abd-Elhameed, W.M., Bassuony, M.A.: On using third and fourth kinds Chebyshev operational matrices for solving Lane–Emden type equations. Rom. J. Phys. 60, 3–4 (2015)

    Google Scholar 

  45. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38, 6038–6051 (2014)

    Article  MathSciNet  Google Scholar 

  46. Yang, L., Shen, C., Xie, D.: Multiple positive solutions for nonlinear boundary value problem of fractional order differential equation with the Riemann–Liouville derivative. Adv. Diff. Equ 2014, 284 (2014)

    Article  MathSciNet  Google Scholar 

  47. Doha, E.H., Bhrawy, A.H., Baleanu, D., Abdelkawy, M.A.: Numerical treatment of coupled nonlinear hyperbolic Klein–Gordon equations. Rom. J. Phys. 59, 247–264 (2014)

    Google Scholar 

  48. Ilati, M., Dehghan, M.: The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng. Anal. Bound. Elem. 52, 99–109 (2015)

    Article  MathSciNet  Google Scholar 

  49. Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S., Abdelkawy, M.A.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo (2015). doi:10.1007/s10092-014-0132-x

    Google Scholar 

  50. Zhang, H., Yang, X., Hanc, X.: Discrete-time orthogonal spline collocation method with application to two-dimensional fractional cable equation. Comput. Math. Appl. 68, 1710–1722 (2014)

    Article  MathSciNet  Google Scholar 

  51. Yang, Y., Chen, Y., Huang, Y.: Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations. Acta Math. Sci. 34, 673–690 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ma, X., Huang, C.: Spectral collocation method for linear fractional integro-differential equations. Appl. Math. Model. 38, 1434–1448 (2014)

    Article  MathSciNet  Google Scholar 

  53. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Saadatmandi, A., Dehghan, M.: A method based on the tau approach for the identification of a time-dependent coefficient in the heat equation subject to an extra measurement. J. Vib. Control 18, 1125–1132 (2012)

    Article  MathSciNet  Google Scholar 

  55. Bhrawy, A.H., Zaky, M.A., Machado, J.A.T.: Efficient Legendre spectral tau algorithm for solving two-sided space-time Caputo fractional advection-dispersion equation. J. Vib. Control (2015). doi:10.1177/1077546314566835

    Google Scholar 

  56. Lau, S.R., Price, H.: Sparse spectral-tau method for the three-dimensional helically reduced wave equation on two-center domains. J. Comput. Phys. 231, 7695–7714 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zayernouri, M., Ainsworth, M.: Em Karniadakis, G.: A unified Petrov-Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. (2014). doi:10.1016/j.cma.2014.10.051

    Google Scholar 

  58. Dehghan, M., Salehi, R.: A meshless local Petrov–Galerkin method for the time-dependent Maxwell equations. J. Comput. Appl. Math. 268, 93–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang, Y.: Jacobi spectral Galerkin methods for fractional integro-differential equations. Calcolo (2014). doi:10.1007/s10092-014-0128-6

    Google Scholar 

  60. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–46 (2014)

    Article  MathSciNet  Google Scholar 

  61. Doha, E.H., Bhrawy, A.H., Abdelkawy, M.A., Hafez, R.M.: A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation. Cent. Eur. J. Phys. 12, 111–122 (2014)

    Google Scholar 

  62. Doha, E.H., Bhrawy, A.H., Saker, M.A.: On the derivatives of Bernstein polynomials: an application for the solution of high even-order differential equations. Bound. Value Probl. (2011). doi:10.1155/2011/829543

    MathSciNet  Google Scholar 

  63. Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80, 101–116 (2015)

    Article  MathSciNet  Google Scholar 

  64. Ozarslan, M.A.: On a singular integral equation including a set of multivariate polynomials suggested by Laguerre polynomials. Appl. Math. Comput. 229, 350–358 (2014)

    Article  MathSciNet  Google Scholar 

  65. Drivera, K., Muldoon, M.E.: Common and interlacing zeros of families of Laguerre polynomials. J. Approx. Theory (2014). doi:10.1016/j.jat.2013.11.013

    Google Scholar 

  66. Baleanu, D., Bhrawy, A.H., Taha, T.M.: Two efficient generalized Laguerre spectral algorithms for fractional initial value problems. Abstr. Appl. Anal. (2013). doi:10.1155/2013/546502

    Google Scholar 

  67. Bhrawy, A.H., Alghamdi, M.M., Taha, T.M.: A new modified generalized Laguerre operational matrix of fractional integration for solving fractional differential equations on the half line. Adv. Differ. Equ. 2012, 0:179 (2012)

  68. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37, 5498–5510 (2013)

    Article  MathSciNet  Google Scholar 

  71. Yin, F., Song, J., Wu, Y., Zhang, L.: Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions. Abstr. Appl. Anal. (2013). Article ID 562140, 13 pages

  72. Ahmadian, A., Suleiman, M., Salahshour, S.: An operational matrix based on Legendre polynomials for solving fuzzy fractional-order differential equations. Abstr. Appl. Anal. (2013). Article ID 505903 29

  73. Ishteva, M., Boyadjiev, L.: On the C-Laguerre functions. C.R. Acad. Bulg. Sci. 58(9), 1019–1024 (2005)

    MathSciNet  MATH  Google Scholar 

  74. Ishteva, M., Boyadjiev, L., Scherer, R.: On the Caputo operator of fractional calculus and C-Laguerre functions. Math. Sci. Res. 9(6), 161–170 (2005)

    MathSciNet  MATH  Google Scholar 

  75. Yin, F., Song, J., Leng, H., Lu, F.: Couple of the variational iteration method and fractional-order Legendre functions method for fractional differential equations. Sci. World J. (2014). Article ID 928765, 9 pp

  76. Dehghan, M., Yousefi, S.A., Lotfi, A.: The use of Hes variational iteration method for solving the telegraph and fractional telegraph equations. Int. J. Numer. Methods Biomed. Eng. 27, 219–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  77. Ford, N.J., Connolly, J.A.: Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. Comput. Appl. Math. 229, 382–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  78. Lakestani, M., Dehghan, M., Irandoust-pakchin, S.: The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 17, 1149–1162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  79. Bhrawy, A.H., Tharwat, M.M., Alghamdi, M.A.: A new operational matrix of fractional integration for shifted Jacobi polynomials. Bull. Malays. Math. Sci. Soc. (2) 37(4), 983–995 (2014)

  80. Bhrawy, A.H., Abdelkawy, M.A.: A fully spectral collocation approximation for multi-dimensional fractional Schrodinger equations. J. Comput. Phys. 294, 462–483 (2015)

    Article  MathSciNet  Google Scholar 

  81. Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Apl. Math. Lett. 26, 25–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  82. Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67(2) (2015)

  83. Mokhtary, P.: Reconstruction of exponentially rate of convergence to Legendre collocation solution of a class of fractional integro-differential equations. J. Comput. Appl. Math. 279, 145–158 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  84. Abdelkawy, M.A., Taha, T.M.: An operational matrix of fractional derivatives of Laguerre polynomials. Walailak J. Sci. Technol. 11, 1041–1055 (2014)

    Google Scholar 

  85. Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F.: Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl. Math. Comput. 234, 267–276 (2014)

  86. Prakash, P., Harikrishnan, S., Benchohra, M.: Oscillation of certain nonlinear fractional partial differential equation with damping term. Appl. Math. Lett. 43, 72–79 (2015)

    Article  MathSciNet  Google Scholar 

  87. El-Wakil, S.A., Abulwafa, E.M.: Formulation and solution of space–time fractional Boussinesq equation. Nonlinear Dyn. 80, 167–175 (2015)

  88. Stokes, P.W., Philippa, B., Read, W., White, R.D.: Efficient numerical solution of the time fractional diffusion equation by mapping from its Brownian counterpart. J. Comput. Phys. 282, 334–344 (2015)

    Article  MathSciNet  Google Scholar 

  89. Chen, Y., Ke, X., Wei, Y.: Numerical algorithm to solve system of nonlinear fractional differential equations based on wavelets method and the error analysis. Appl. Math. Comput. 251, 475–488 (2015)

    Article  MathSciNet  Google Scholar 

  90. Szegö, G.: Orthogonal Polynomials. In: American Mathematical Society Colloquium Publications, vol. 23, 4th edn. American Mathematical Society, Providence, RI (1975)

  91. Funaro, D.: Polynomial Approximations of Differential Equations. Springer, Berlin (1992)

    Google Scholar 

  92. Doha, E.H.: On the coefficients of differentiated expansions and derivatives of Jacobi polynomials. J. Phys. A Math. Gen. 35, 3467–3478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  93. Doha, E.H.: On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials. J. Phys. A Math. Gen. 37, 657–675 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  94. Luke, Y.: The Special Functions and Their Approximations, vol. 2. Academic Press, New York (1969)

    MATH  Google Scholar 

  95. Saadatmandi, A.: Bernstein operational matrix of fractional derivatives and its applications. Appl. Math. Model. 38, 1365–1372 (2014)

    Article  MathSciNet  Google Scholar 

  96. Diethelm, K., Ford, N.J.: Multi-order fractional differential equations and their numerical solutions. Appl. Math. Comput. 154, 621–640 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  97. Bhrawy, A.H., Alhamed, Y.A., Baleanu, D., Al-Zahrani, A.A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Frac. Calc. Appl. Anal. 17, 1137–1157 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the reviewers for carefully reading this article review and for their comments and suggestions which have improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Taha, T.M. & Machado, J.A.T. A review of operational matrices and spectral techniques for fractional calculus. Nonlinear Dyn 81, 1023–1052 (2015). https://doi.org/10.1007/s11071-015-2087-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2087-0

Keywords

Navigation