Skip to main content
Log in

Adaptive robust fuzzy control for dual arm robot with unknown input deadzone nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The control problem of the dual arm robot rigidly grasping an object with unknown nonsymmetric deadzone input is investigated in this paper. Due to the factor that the deadzone nonlinearity is widespread in the actuators, a smooth inverse adaptive deadzone is incorporated to minimize the effect of the deadzone nonlinearity in the dual arm robot system to guarantee a high accuracy tracking. Since these type of robots are usually applied in complex environments, a multi-input multi-output fuzzy logic unit is adopted to approximate the manipulator’s dynamics to achieve a accuracy tracking performances. Moreover, a decentralized robust fuzzy adaptive control scheme is constructed to make the motion and internal forces track a reference trajectories in the presence of parameters uncertainty and external disturbance. By using the Lyapunov method, the stability of the signals in the closed-loop system is proved. Simulation result demonstrates that the proposed controller is effective to the dual arm robot system with deadzone nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Cheah, C.C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 692–702 (2003)

    Article  Google Scholar 

  2. Gan, Y., Dai, X.: Base frame calibration for coordinated industrial robots. Robot. Auton. Syst. 59(7), 563–570 (2011)

    Article  Google Scholar 

  3. Dun, S., Li, Z.M.: Visualization of multidigit manipulation mechanics: manipulation mechanics. IEEE Trans. Instrum. Meas. 54(6), 2336–2341 (2005)

    Article  Google Scholar 

  4. Gueaieb, W., Karray, F., Al-Sharhan, S.: A robust adaptive fuzzy position/force control scheme for cooperative manipulators. IEEE Trans. Control Syst. Technol. 11(4), 516–528 (2003)

    Article  Google Scholar 

  5. Hou, Z., Cheng, L., Tan, M.: Multicriteria optimization for coordination of redundant robots using a dual neural network. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40(4), 1075–1087 (2010)

    Article  Google Scholar 

  6. Hsu, P.: Coordinated control of multiple manipulator systems. IEEE Trans. Robot. Autom. 9(4), 400–410 (1993)

    Article  Google Scholar 

  7. Park, K., Park, K., Kim, D.: Design of dual arm robot manipulator for precision assembly of mechanical parts. In: International Conference on Smart Manufacturing Application, 2008 (ICSMA 2008), pp. 424–427 (2008)

  8. Hahn, H., Neumann, M.: Mathematical modeling, control, computer simulation and laboratory experiments of a spatial servopneumatic parallel robot. Nonlinear Dyn. 45(3–4), 207–226 (2006)

    Article  Google Scholar 

  9. Sun, D., Mills, J.K.: Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Trans. Robot. Autom. 18(4), 498–510 (2002)

    Article  Google Scholar 

  10. Caccavale, F., Chiacchio, P., Chiaverini, S.: Task-space regulation of cooperative manipulators. Automatica 36(6), 879–887 (2000)

    Article  MathSciNet  Google Scholar 

  11. Liu, Z., Chen, C., Zhang, Y.: Decentralized robust fuzzy adaptive control of humanoid robot manipulation with unknown input backlash: An experimental study. IEEE Trans. Fuzzy Syst. PP(99), 1–1 (2014)

  12. Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation-a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)

    Article  Google Scholar 

  13. Rostami, S., Hamidzadeh, B., Camporese, D.: An optimal periodic scheduler for dual-arm robots in cluster tools with residency constraints. IEEE Trans. Robot. Autom. 17(5), 609–618 (2001)

    Article  Google Scholar 

  14. Caccavale, F., Chiacchio, P., Marino, A., Villani, L.: Six-dof impedance control of dual-arm cooperative manipulators. IEEE Trans. Mechatron. 13(5), 576–586 (2008)

    Article  Google Scholar 

  15. Sirouspour, S.: Modeling and control of cooperative teleoperation systems. IEEE Trans. Robot. 21(6), 1220–1225 (2005)

    Article  Google Scholar 

  16. Merchan-Cruz, E.A., Morris, A.S.: Fuzzy-ga-based trajectory planner for robot manipulators sharing a common workspace. IEEE Trans. Robot. 22(4), 613–624 (2006)

    Article  Google Scholar 

  17. Moosavian, S.A.A., Rastegari, R.: Multiple-arm space free-flying robots for manipulating objects with force tracking restrictions. Robot. Auton. Syst. 54(10), 779–788 (2006)

    Article  MATH  Google Scholar 

  18. Vukobratovic, M., Tuneski, A.: Mathematical model of multiple manipulators: cooperative compliant manipulation on dynamical environments. Mech. Mach. Theory 33(8), 1211–1239 (1998)

    Article  MathSciNet  Google Scholar 

  19. Sarkar, N., Yun, X., Kumar, V.: Dynamic control of 3-d rolling contacts in two-arm manipulation. IEEE Trans. Robot. Autom. 13(3), 364–376 (1997)

    Article  Google Scholar 

  20. Cheng, H., Liu, G., Yiu, Y., Xiong, Z., Li, Z.: Advantages and dynamics of parallel manipulators with redundant actuation. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, vol. 1, pp. 171–176 (2001)

  21. Cheng, L., Hou, Z.G., Tan, M.: Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics. In: IEEE International Conference on Systems, Man and Cybernetics, 2008 (SMC 2008), pp. 2712–2717 (2008)

  22. Li, Z., Ge, S.S., Wang, Z.: Robust adaptive control of coordinated multiple mobile manipulators. Mechatronics 18(5), 239–250 (2008)

    Article  Google Scholar 

  23. Hua, C.C., Chang, Y.F.: Decentralized adaptive neural network control for mechanical systems with dead-zone input. Nonlinear Dyn. 76(3), 1845–1855 (2014)

    Article  MathSciNet  Google Scholar 

  24. Wai, R.J., Chen, P.C.: Robust neural-fuzzy-network control for robot manipulator including actuator dynamics. IEEE Trans. Ind. Electron. 53(4), 1328–1349 (2006)

    Article  MATH  Google Scholar 

  25. Wang, L.X.: A Course in Fuzzy Systems. Prentice-Hall, USA (1999)

    Google Scholar 

  26. Liu, Y.J., Tong, S.C., Wang, W.: Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems. Fuzzy Sets Syst. 160(19), 2727–2754 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tong, S., Liu, C., Li, Y.: Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans. Fuzzy Syst. 18(5), 845–861 (2010)

    Article  MATH  Google Scholar 

  28. Huang, Y.S., Zhou, D.Q.: Decentralized adaptive output feedback fuzzy controller for a class of large-scale nonlinear systems. Nonlinear Dyn. 65(1–2), 85–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guelton, K., Bouarar, T., Manamanni, N.: Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi-Sugeno systems—a descriptor redundancy approach. Fuzzy Sets Syst. 160(19), 2796–2811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee, H.: Robust adaptive fuzzy control by backstepping for a class of mimo nonlinear systems. IEEE Trans. Fuzzy Syst. 19(2), 265–275 (2011)

    Article  MATH  Google Scholar 

  31. Yousef, H., Hamdy, M., El-Madbouly, E., Eteim, D.: Adaptive fuzzy decentralized control for interconnected mimo nonlinear subsystems. Automatica 45(2), 456–462 (2009)

    Article  MathSciNet  Google Scholar 

  32. Li, Z., Yang, C., Tang, Y.: Decentralised adaptive fuzzy control of coordinated multiple mobile manipulators interacting with non-rigid environments. Control Theory Appl. IET 7(3) (2013)

  33. Tong, S., Huo, B., Li, Y.: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)

    Article  Google Scholar 

  34. Selmic, R.R., Lewis, F.L.: Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 45(4), 602–613 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tong, S., Li, Y.: Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)

    Article  MATH  Google Scholar 

  36. Zhou, N., Liu, Y.J., Tong, S.C.: Adaptive fuzzy output feedback control of uncertain nonlinear systems with nonsymmetric dead-zone input. Nonlinear Dyn. 63(4), 771–778 (2011)

    Article  MathSciNet  Google Scholar 

  37. Wang, X.S., Su, C.Y., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3), 407–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, J., Wen, C., Zhang, Y.: Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity. IEEE Trans. Autom. Control 51(3), 504–511 (2006)

    Article  MathSciNet  Google Scholar 

  39. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2012)

    Article  MATH  Google Scholar 

  40. Tong, S., Li, Y.: Adaptive fuzzy decentralized output feedback control for nonlinear large-scale systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(5), 913–925 (2013)

    Article  Google Scholar 

  41. Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Figueiredo, C.M., Ferreira, N.F.: Fractional-order control of a dual-arm robotic system. In: The 7th European Nonlinear Dynamics Conference (ENOC 2011) (2011)

  43. Guo, Y.S., Chen, L.: Terminal sliding mode control for coordinated motion of a space rigid manipulator with external disturbance. Appl. Math. Mech. 29, 583–590 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Project U1134004, and Science Fund for Distinguished Young Scholars S20120011437, the Ministry of education of New Century Excellent Talent (NCET-12-0637), the 973 Program of China 2011CB013104, and by the Doctoral Fund of Ministry of Education of China under Grant 20124420130001. The authors thank a lot to the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, Z., Chen, C. et al. Adaptive robust fuzzy control for dual arm robot with unknown input deadzone nonlinearity. Nonlinear Dyn 81, 1301–1314 (2015). https://doi.org/10.1007/s11071-015-2070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2070-9

Keywords

Navigation