Skip to main content
Log in

A modified incremental harmonic balance method based on the fast Fourier transform and Broyden’s method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A modified incremental harmonic balance (IHB) method is introduced, where Fourier coefficients of the residual of nonlinear algebraic equations are approximated by the fast Fourier transform, and the Jacobian of the nonlinear algebraic equations is approximated by Broyden’s method. The modified IHB method is first illustrated by solving Duffing’s equation, whose solutions from the modified IHB method are in excellent agreement with that from Runge–Kutta method. The calculation time for the modified IHB method is almost two orders of magnitude less than that for the original IHB method. By showing that the Jacobian of the path function in Broyden’s method is invariant, the arc-length method with the path-following technique is used to calculate an amplitude–frequency response curve of Duffing’s equation. Bifurcations of Mathieu–Duffing equation are also studied using the modified IHB method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Bajkowski, J., Szemplinska-Stupnicka, W.: Internal resonances effects-simulation versus analytical methods results. J. Sound Vib. 104, 259–275 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lau, S.L., Cheung, Y.K., Wu, S.Y.: A variable parameter incrementation method for dynamic instability of linear and nonlinear elastic systems. ASME J. Appl. Mech. 49(4), 849–853 (1982)

    Article  MATH  Google Scholar 

  4. Szemplinska-Stupnicka, W.: The generalized harmonic balance method for determining the combination resonance in the parametric dynamic systems. J. Sound Vib. 58(3), 347–361 (1978)

    Article  MATH  Google Scholar 

  5. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. ASME J. Appl. Mech. 48, 959–964 (1981)

    Article  MATH  Google Scholar 

  6. Lau, S.L., Cheung, Y.K., Wu, S.Y.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems. ASME J. Appl. Mech. 50(4a), 871–876 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheung, Y.K., Chen, S.H., Lau, S.L.: Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140(2), 273–286 (1990)

    Article  MathSciNet  Google Scholar 

  8. Leung, A.Y.T., Chui, S.K.: Non-linear vibration of coupled doffing oscillators by an improved incremental harmonic balance method. J. Sound Vib. 181(4), 619–633 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sinha, S.C., Pandiyan, R.: Analysis of quasilinear dynamical systems with periodic coefficients via Liapunov–Floquet transformation. Int. J. Nonlinear Mech. 29(5), 687–702 (1994)

  10. Sinha, S.C., Pandiyan, R., Bibb, J.S.: Liapunov-Floquet transformation: computation and applications to periodic systems. J. Vib. Acoust. 118(2), 209–219 (1996)

  11. David, A., Sinha, S.C.: Versal deformation and local bifurcation analysis of time-period nonlinear systems. Nonlinear Dyn. 21, 317–336 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Raghothama, A., Narayanan, S.: Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226(3), 469–492 (1999)

    Article  Google Scholar 

  13. Raghothama, A., Narayanan, S.: Bifurcation and chaos in escape equation model by incremental harmonic balancing. Chaos Solitons Fractals 11, 1349–1363 (1999)

    Article  MathSciNet  Google Scholar 

  14. Huang, J.L., Zhu, W.D.: Nonlinear dynamics of a high-dimensional model of a rotating Euler–Bernouli beam under the gravity load. J. Appl. Mech. 81(10), 101007 (2014)

    Article  Google Scholar 

  15. Xu, G.Y., Zhu, W.D.: Nonlinear and time-varying dynamics of high-dimensional models of a translating beam with a stationary load subsystem. ASME J. Vib. Acoust. 132(6), 061012 (2010)

    Article  MathSciNet  Google Scholar 

  16. Hsu, C.S., Cheng, W.H.: Applications of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems. ASME J. Appl. Mech. 40(1), 78–86 (1973)

    Article  MATH  Google Scholar 

  17. Friedmann, P., Hammond, C.E., Woo, T.H.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11(7), 1117–1136 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ling, F.H., Wu, X.X.: Fast Galerkin method and its application to determine periodic solution of non-linear oscillators. Int. J. Non Linear Mech. 22, 89–98 (1987)

    Article  MATH  Google Scholar 

  19. Mitra, R.K.: Dynamic stability of time-delayed feedback control system by FFT based IHB method. WSEAS Trans. Appl. Theor. Mech. 4(8), 292–303 (2013)

    Google Scholar 

  20. Lu, W., Ge, F., Wu, X.D., Hong, Y.S.: Nonlinear dynamics of a submerged floating moored structure by incremental harmonic balance method with FFT. Mar. Struct. 31, 63–81 (2013)

  21. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 327–344 (1965)

    Article  MathSciNet  Google Scholar 

  22. Gay, D.M.: Some convergence properties of Broyden’s method. SIAM J. Numer. Anal. 16(4), 623–630 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Leung, A.Y.T.: Nonlinear natural vibration analysis by selective coefficient increment. Comput. Mech. 5, 73–80 (1989)

    Article  MATH  Google Scholar 

  24. Shen, J.H., Lin, K.C., Chen, S.H., Sze, K.Y.: Bifurcation and route-to-chaos analysis for Mathieu–Duffing oscillator by the incremental harmonic balance method. Nonlinear Dyn. 52, 403–414 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support from the National Science Foundation through Grant No. CMMI-1000830. They would also like to thank Jianliang Huang for some valuable discussion on bifurcations of Mathieu–Duffing equation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.F., Zhu, W.D. A modified incremental harmonic balance method based on the fast Fourier transform and Broyden’s method. Nonlinear Dyn 81, 981–989 (2015). https://doi.org/10.1007/s11071-015-2045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2045-x

Keywords

Navigation