Skip to main content
Log in

Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the nonlinear dynamics of a cantilevered pipe conveying fluid interacting with two support walls on both sides is first investigated. The main goal of this study is to explore how the dynamics of a cantilevered pipe will perform in the presence of two support walls along the pipe axis. The interacting force is defined as impact in order to simulate the impacting effects for a pipe with various flow velocities. The impact force is modeled either by a cubic spring or by a trilinear spring. The nonlinear equations of motion are discretized via Galerkin’s method, and the discretized equations are solved by using a fourth-order Runge–Kutta method. Results show that the pipe would periodically impact the walls when the flow velocity is just beyond the critical value. When the flow velocity is sufficiently higher, however, the pipe may behave different patterns of contacting the walls, such as point contact and segments contact. Periodic, quasi-periodic motions, as well as chaotic oscillations are observed in such a pipe system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Paidoussis, M.P.: A review of flow-induced vibrations in reactors and reactor components. Nucl. Eng. Des. 74(1), 31–60 (1983)

    Article  Google Scholar 

  2. Chen, S.S.: A review of dynamic tube-support interaction in heat exchanger tubes. Proc. Inst. Mech. Eng. Flow Induc. Vib. C 416, 20–22 (1991)

    Google Scholar 

  3. Weaver, D.S., Ziada, S., Au-Yang, M.K., et al.: Flow-induced vibrations in power and process plant components—progress and prospects. J. Press. Vessel Technol. 122(3), 339–348 (2000)

    Article  Google Scholar 

  4. Pettigrew, M.J., Sylvestre, Y., Campagna, A.O.: Vibration analysis of heat exchanger and steam generator designs. Nucl. Eng. Des. 48(1), 97–115 (1978)

    Article  Google Scholar 

  5. Weaver, D.S., Schneider, W.: The effect of flat bar supports on the cross-flow induced response of heat exchanger U-tubes. J. Eng. Gas Turbines Power 105(4), 775–781 (1983)

  6. Chen, S.S., Jendrzejczyk, J.A., Wambsganss, M.W.: Dynamics of tubes in fluid with tube–baffle interaction. J. Press. Vessel Technol. 107(1), 7–17 (1985)

    Article  Google Scholar 

  7. Haslinger, K.H., Martin, M.L., Steininger, D.A.: Pressurized water reactor steam generator tube wear prediction utilizing experimental techniques. In: Proceedings of the International Conference on Flow Induced Vibrations (1987)

  8. Antunes, J., Axisa, F., Vento, M.A.: Experiments on vibro-impact dynamics under fluidelastic instability. Proc. ASME Press. Vessels Pip. N. Y. 189, 127–138 (1990)

    Google Scholar 

  9. Taylor, C., Boucher, K., Yetisir, M.: Vibration and Impact forces due to two-phase cross-flow in U-bend region of nuclear steam generators. In: Proceedings of the 6th International Conference on Flow-Induced Vibration (1995)

  10. Rogers, R.J., Pick, R.J.: Factors associated with support plate forces due to heat-exchanger tube vibratory contact. Nucl. Eng. Des. 44(2), 247–253 (1977)

    Article  Google Scholar 

  11. Ghayesh, M.H., Païdoussis, M.P., Modarres-Sadeghi, Y.: Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J. Sound Vib. 330(12), 2869–2899 (2011)

    Article  Google Scholar 

  12. Xia, W., Wang, L.: The effect of axial extension on the fluidelastic vibration of an array of cylinders in cross-flow. Nucl. Eng. Des. 240(7), 1707–1713 (2010)

    Article  MathSciNet  Google Scholar 

  13. Wang, L., Ni, Q.: Hopf bifurcation and chaotic motions of a tubular cantilever subject to cross flow and loose support. Nonlinear Dyn. 59(1–2), 329–338 (2010)

    Article  MATH  Google Scholar 

  14. Wang, L., Dai, H.L., Han, Y.Y.: Cross-flow-induced instability and nonlinear dynamics of cylinder arrays with consideration of initial axial load. Nonlinear Dyn. 67(2), 1043–1051 (2012)

    Article  MathSciNet  Google Scholar 

  15. Sauve, R.G., Teper, W.W.: Impact simulation of process equipment tubes and support plates—a numerical algorithm. J. Press. Vessel Technol. 109(1), 70–79 (1987)

    Article  Google Scholar 

  16. Rao, S.M., Gupta, G.D., Eisinger, F.L., et al.: Computer modeling of vibration and wear multispan tubes with clearances at tube supports. In: Proceedings of the International Conference on Flow Induced Vibrations (1987)

  17. Hassan, M.A., Weaver, D.S., Dokainish, M.A.: A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports. J. Fluids Struct. 16(8), 1145–1176 (2002)

    Article  Google Scholar 

  18. Hassan, M.A., Weaver, D.S., Dokainish, M.A.: A new tube/support impact model for heat exchanger tubes. J. Fluids Struct. 21(5), 561–577 (2005)

    Article  Google Scholar 

  19. Kim, B.S., Pettigrew, M.J., Tromp, J.H.: Vibration damping of heat exchangertubes in liquids: effects of support parameters. J. Fluids Struct. 2(6), 593–613 (1988)

    Article  Google Scholar 

  20. Ko, P.L.: Heat exchanger tube fretting wear: review and application to design. J. Tribol. 107(2), 149–156 (1985)

    Article  Google Scholar 

  21. Païdoussis, M.P., Semler, C.: Nonlinear and chaotic oscillations of a constrained cantilevered pipe conveying fluid: a full nonlinear analysis. Nonlinear Dyn. 4(6), 655–670 (1993)

  22. Paidoussis, M.P., Li, G.X.: Cross-flow-induced chaotic vibrations of heat-exchanger tubes impacting on loose supports. J. Sound Vib. 152(2), 305–326 (1992)

    Article  MATH  Google Scholar 

  23. Paidoussis, M.P., Li, G.X., Rand, R.H.: Chaotic motions of a constrained pipe conveying fluid: comparison between simulation, analysis, and experiment. J. Appl. Mech. 58(2), 559–565 (1991)

    Article  Google Scholar 

  24. Paidoussis, M.P., Issid, N.T.: Dynamic stability of pipes conveying fluid. J. Sound Vib. 33(3), 267–294 (1974)

    Article  Google Scholar 

  25. Semler, C.: Nonlinear dynamics and chaos of a pipe conveying fluid. Master’s Thesis, Faculty of Engineering, McGill University (1991)

Download references

Acknowledgments

The financial support of the National Natural Science Foundation of China (Nos. 11172109 and 11172107), the Natural Science Foundation of Hubei Province (2013CFA130 and 2014CFA124), the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0183), and the Fundamental Research Funds for the Central Universities, HUST (2014YQ007) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikun Wang.

Appendix

Appendix

In this part, we will give the elements of the matrices mentioned in Sect. 3. As described above, the nonlinear terms in Eq. (5) may be written in Eq. (6). As can be seen that, the nonlinear terms are the multiplication of three terms, which are all related to the eigenfuncitons, such as \({\eta }^{\prime }{\eta }^{{\prime }{\prime }}{\eta }^{{\prime }{\prime }{\prime }}\) and \({\eta }^{{\prime }{\prime }}\int _\xi ^1 {\int _0^\xi {{\eta }^{\prime }{\dot{{\eta }}^{{\prime }{\prime }}}\mathrm{d}\xi } \mathrm{d}\xi } \). After applying the Galerkin’s technique, the multiplication has the form of (13). After using the transforming scheme, Eq. (6) would be of that form of Eqs. (7), (8), and (9). Expressions of the elements of matrices in these equations are given below (taking \({\eta }^{\prime }{\eta }^{{\prime }{\prime }}{\eta }^{{\prime }{\prime }{\prime }}\), for example). As to the integrals of in some of the nonlinear terms, they could be applied on the corresponding terms when the transformation has been completed.

$$\begin{aligned} \mathbf{A}_L= & {} \left[ {{\begin{array}{lllll} {{\varphi }^{\prime }_1 }&{} {{\varphi }^{\prime }_2 }&{} \cdots &{} {{\varphi }^{\prime }_N } \\ \end{array} }} \right] _{1\times N} \end{aligned}$$
(13)
$$\begin{aligned} \mathbf{B}_L= & {} \left[ {{\begin{array}{lllllllllllll} {{\varphi }^{{\prime }{\prime }}_1 }&{} {{\varphi }^{{\prime }{\prime }}_2 }&{} \cdots &{} {{\varphi }^{{\prime }{\prime }}_N }&{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} {{\varphi }^{{\prime }{\prime }}_1 }&{} {{\varphi }^{{\prime }{\prime }}_2 }&{} \cdots &{} {{\varphi }^{{\prime }{\prime }}_N }&{} &{} 0&{} &{} &{} \\ &{} &{} 0&{} &{} &{} &{} &{} &{} \ddots &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} {{\varphi }^{{\prime }{\prime }}_1 }&{} {{\varphi }^{{\prime }{\prime }}_2 }&{} \cdots &{} {{\varphi }^{{\prime }{\prime }}_N } \\ \end{array} }} \right] _{N\times N^{2}} \end{aligned}$$
(14)
$$\begin{aligned} \mathbf{C}_L= & {} \left[ {{\begin{array}{llllllllllllllllllll} {{\varphi }^{{\prime }{\prime }{\prime }}_1 }&{} {{\varphi }^{{\prime }{\prime }{\prime }}_2 }&{} \cdots &{} {{\varphi }^{{\prime }{\prime }{\prime }}_N }&{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} \\ &{} &{} &{} &{} {{\varphi }^{{\prime }{\prime }{\prime }}_1 }&{} {{\varphi }^{{\prime }{\prime }{\prime }}_2 }&{} \cdots &{} {{\varphi }^{{\prime }{\prime }{\prime }}_N }&{} &{} &{} &{} &{} &{} 0&{} &{} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} {{\varphi }^{{\prime }{\prime }{\prime }}_1 }&{} {{\varphi }^{{\prime }{\prime }{\prime }}_2 }&{} \cdots &{} {{\varphi }^{{\prime }{\prime }{\prime }}_N }&{} &{} &{} &{} &{} \\ &{} &{} &{} 0&{} &{} &{} &{} &{} &{} &{} &{} &{} \ddots &{} &{} &{} &{} \\ &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} &{} {{\varphi }^{{\prime }{\prime }{\prime }}_1 }&{} {{\varphi }^{{\prime }{\prime }{\prime }}_2 }&{} \cdots &{} {{\varphi }^{{\prime }{\prime }{\prime }}_N } \\ \end{array} }} \right] _{N^{2}\times N^{3}} \end{aligned}$$
(15)
$$\begin{aligned} \mathbf{D}_T= & {} \left[ {{\begin{array}{llllll} {{q}^{\prime }_1 }&{} &{} &{} &{} \\ &{} {{q}^{\prime }_1 }&{} &{} 0&{} \\ &{} &{} {{q}^{\prime }_1 }&{} &{} \\ &{} 0&{} &{} \ddots &{} \\ &{} &{} &{} &{} {{q}^{\prime }_1 } \\ {{q}^{\prime }_2 }&{} &{} &{} &{} \\ &{} {{q}^{\prime }_2 }&{} &{} 0&{} \\ &{} &{} {{q}^{\prime }_2 }&{} &{} \\ &{} 0&{} &{} \ddots &{} \\ &{} &{} &{} &{} {{q}^{\prime }_2 } \\ &{} &{} \cdots &{} &{} \\ {{q}^{\prime }_N }&{} &{} &{} &{} \\ &{} {{q}^{\prime }_N }&{} &{} 0&{} \\ &{} &{} {{q}^{\prime }_N }&{} &{} \\ &{} 0&{} &{} \ddots &{} \\ &{} &{} &{} &{} {{q}^{\prime }_N } \\ \end{array} }} \right] _{N^{3}\times N^{2}}\end{aligned}$$
(16)
$$\begin{aligned} \mathbf{E}_T= & {} \left[ {{\begin{array}{lllll} {{q}^{{\prime }{\prime }}_1 }&{} &{} &{} 0 \\ &{} {{q}^{{\prime }{\prime }}_1 }&{} &{} \\ &{} &{} \ddots &{} \\ 0&{} &{} &{} {{q}^{{\prime }{\prime }}_1 } \\ {{q}^{{\prime }{\prime }}_2 }&{} &{} &{} 0 \\ &{} {{q}^{{\prime }{\prime }}_2 }&{} &{} \\ &{} &{} \ddots &{} \\ &{} &{} &{} {{q}^{{\prime }{\prime }}_2 } \\ 0&{} \cdots &{} \cdots &{} \\ {{q}^{{\prime }{\prime }}_N }&{} &{} &{} 0 \\ &{} {{q}^{{\prime }{\prime }}_N }&{} &{} \\ &{} &{} \ddots &{} \\ 0&{} &{} &{} {{q}^{{\prime }{\prime }}_N } \\ \end{array} }} \right] _{N^{2}\times N}\end{aligned}$$
(17)
$$\begin{aligned} \mathbf{F}_T= & {} \left[ {{\begin{array}{l} {{q}^{{\prime }{\prime }{\prime }}_1 } \\ {{q}^{{\prime }{\prime }{\prime }}_2 } \\ \vdots \\ {{q}^{{\prime }{\prime }{\prime }}_N } \\ \end{array} }} \right] _{N\times 1} \end{aligned}$$
(18)

Substituting (13) to (18) into Eq. (9), left multiplying \(\varphi _i \left( \xi \right) \) and integrating along the pipe, we would get the coefficients of the nonlinear terms.

$$\begin{aligned} \alpha _{ijkl}= & {} \int _0^1 {\left[ {u^{2}-\frac{3}{2}\gamma \left( {1-\xi } \right) } \right] \varphi _i } \varphi _j ^{\prime \prime }\varphi _k ^{\prime }\varphi _l ^{\prime }\mathrm{d}\xi \nonumber \\&-\,\frac{1}{2}\gamma \int _0^1 {\varphi _i } \varphi _j ^{\prime }\varphi _k ^{\prime }\varphi _l ^{\prime }\mathrm{d}\xi +3\int _0^1 {\varphi _i } \varphi _j ^{\prime }\varphi _k ^{\prime \prime }\varphi _l ^{\prime \prime \prime }\mathrm{d}\xi \nonumber \\&+\int _0^1 {\varphi _i } \varphi _j ^{\prime \prime }\varphi _k ^{\prime \prime }\varphi _l ^{\prime \prime }\mathrm{d}\xi \nonumber \\&-\int _0^1 {\varphi _i \varphi _j ^{\prime }\int _0^\xi {\left[ {u^{2}-\gamma \left( {1-\xi } \right) } \right] \varphi _k ^{\prime }\varphi _l ^{\prime \prime \prime }\mathrm{d}\xi } } \mathrm{d}\xi \nonumber \\&+\int _0^1 {\varphi _i } \varphi _j ^{\prime }\int _0^\xi {\varphi _k ^{\prime \prime } \varphi _l^{{\prime }{\prime }{\prime }{\prime }}}\mathrm{d}\xi \mathrm{d}\xi \nonumber \\&+\int _0^1 {\varphi _i } \varphi _j ^{{\prime }{\prime }}\int _\xi ^1 \int _0^\xi \left[ {u^{2}-\gamma \left( {1-\xi } \right) } \right] \nonumber \\&\times \,\varphi _k ^{\prime }\varphi _l ^{{\prime } {\prime }{\prime }}\mathrm{d}\xi \mathrm{d}\xi \mathrm{d}\xi \nonumber \\&-\int _0^1 {\varphi _i } \varphi _j ^{{\prime }{\prime } }\int _\xi ^1 {\int _0^\xi {\varphi _k ^{{\prime }{\prime } }\varphi _l^{{\prime }{\prime }{\prime }{\prime }}\mathrm{d}\xi } } \mathrm{d}\xi \mathrm{d}\xi \nonumber \\&+\,\gamma \int _0^1 {\varphi _i } \varphi _j ^{{\prime }{\prime }}\int _\xi ^1 {\varphi _k ^{\prime }\varphi _l ^{\prime }\mathrm{d}\xi } \mathrm{d}\xi \nonumber \\&-\,u^{2}\int _0^1 {\varphi _i } \varphi _j ^{{\prime }{\prime } }\int _\xi ^1 {\varphi _k ^{\prime }\varphi _l ^{{\prime }{\prime } }\mathrm{d}\xi } \mathrm{d}\xi \nonumber \\&-\int _0^1 {\varphi _i } \varphi _j ^{{\prime }{\prime }}\int _\xi ^1 {\varphi _k ^{{\prime }{\prime }}\varphi _l ^{{\prime }{\prime }{\prime }}\mathrm{d}\xi } \mathrm{d}\xi \end{aligned}$$
(19)
$$\begin{aligned} \beta _{ijkl}= & {} 2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }^{\prime }_j {\varphi }^{\prime }_k {\varphi }^{\prime }_l \mathrm{d}\xi }\nonumber \\&-\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }^{\prime }_j \int _0^\xi {{\varphi }^{\prime }_k \varphi _l ^{\prime \prime }\mathrm{d}\xi } \mathrm{d}\xi } \nonumber \\&+\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }^{{\prime }{\prime }}_j \int _\xi ^1 {\int _0^\xi {{\varphi }^{\prime }_k \varphi _l ^{\prime \prime }\mathrm{d}\xi } \mathrm{d}\xi } \mathrm{d}\xi }\nonumber \\&-\,2u\sqrt{\beta }\int _0^1 {\varphi _i {\varphi }^{{\prime }{\prime }}_j \int _\xi ^1 {{\varphi }^{\prime }_k \varphi _l ^{\prime }\mathrm{d}\xi } \mathrm{d}\xi }\end{aligned}$$
(20)
$$\begin{aligned} \gamma _{ijkl}= & {} \int _0^1 {\varphi _i {\varphi }^{\prime }_j \int _0^\xi {{\varphi }^{\prime }_k \varphi _l ^{\prime }\mathrm{d}\xi } \mathrm{d}\xi }\nonumber \\&-\int _0^1 {\varphi _i {\varphi }^{{\prime }{\prime }}_j \int _\xi ^1 {\int _0^\xi {{\varphi }^{\prime }_k \varphi _l ^{\prime }\mathrm{d}\xi } \mathrm{d}\xi } \mathrm{d}\xi } \end{aligned}$$
(21)

Coefficients of the linear terms are defined as follows:

$$\begin{aligned} m_{ij}= & {} \int _0^1 {\varphi _i \varphi _j \mathrm{d}\xi } =\delta _{ij}\end{aligned}$$
(22)
$$\begin{aligned} c_{ij}= & {} \alpha \int _0^1 {\varphi _i \varphi _j ^{{\prime }{\prime } {\prime } {\prime } }\mathrm{d}\xi } +2u\sqrt{\beta }\int _0^1 {\varphi _i \varphi _j ^{\prime }\mathrm{d}\xi }\end{aligned}$$
(23)
$$\begin{aligned} k_{ij}= & {} \int _0^1 {\varphi _i \varphi _j ^{{\prime } {\prime } {\prime } {\prime } }\mathrm{d}\xi } +\int _0^1 {\left[ {u^{2}-\gamma \left( {1-\xi } \right) } \right] \varphi _i \varphi _j ^{{\prime }{\prime } }\mathrm{d}\xi }\nonumber \\&+\,\gamma \int _0^1 {\varphi _i \varphi _j ^{\prime }\mathrm{d}\xi } \end{aligned}$$
(24)

As to elements in \(\mathbf{f}\left( \mathbf{q} \right) \), it is obtained by left multiplying \(\varphi _i \left( \xi \right) \) and integrating along the pipe. That is:

$$\begin{aligned} f_i =\int _0^1 {\varphi _i f\left( {\sum _{s=1}^N {\varphi _s q_s } } \right) \mathrm{d}\xi }. \end{aligned}$$
(25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Q., Wang, Y., Tang, M. et al. Nonlinear impacting oscillations of a fluid-conveying pipe subjected to distributed motion constraints. Nonlinear Dyn 81, 893–906 (2015). https://doi.org/10.1007/s11071-015-2038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2038-9

Keywords

Navigation